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Abstract
An important aspect of type checking is name resolution—

i.e., determining the types of names by resolving them to a

matching declaration. For most languages, we can give typ-

ing rules that define name resolution in a way that abstracts

from what order different units of code should be checked

in. However, implementations of type checkers in practice

typically use multiple phases to ensure that declarations of

resolvable names are available before names are resolved.

This gives rise to a gap between typing rules that abstract

from order of type checking and multi-phased type checkers

that rely on explicit ordering.

This paper introduces techniques that reduce this gap.

First, we introduce a monadic interface for phased name

resolution which detects and rejects type checking runs with

name resolution phasing errors where names were wrongly

resolved because some declarations were not available when

they were supposed to be. Second, building on recent work

by Gibbons et al., we use applicative functors to composi-

tionally map abstract syntax trees onto (phased) monadic

computations that represent typing constraints. These tech-

niques reduce the gap between type checker implementa-

tions and typing rules in the sense that (1) both are given

by compositional mappings over abstract syntax trees, and

(2) type checker cases consist of computations that roughly

correspond to typing rule premises, except these are com-

posed using monadic combinators. We demonstrate our ap-

proach by implementing type checkers for Mini-ML with

Damas-Hindley-Milner type inference, and LM, a toy mod-

ule language with a challenging import resolution policy.

CCS Concepts: • Theory of computation → Program
analysis; Type structures; Algebraic semantics; • Software
and its engineering→ Compilers; Semantics.
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1 Introduction
Most modern programming languages have a mutual depen-

dency between typing and name resolution. For example,

consider the following program in a language with modules:

1 module A {

2 import B

3 def f: Int = 1

4 def g: Int = h

5 }

6 module B {

7 def h: Int = A.f + 2

8 }

The named reference h (line 4) must resolve to the declaration

in B, and A.f (line 7) must resolve to the declaration in A.
This raises the question: in what order should we check the

modules A and B such that we can determine that all named

references indeed resolve to declarations of the right type?

For most type checkers in practice, the answer is to use

multiple phases. For the module language above we can first

analyze the overall module structure, associate types with

each declared name, and about which names are reachable

via declared imports. In a subsequent phase, this information

is used to verify that named references on the right hand

side of defs resolve to declarations of the right type.

In contrast, it is common for typing rules to abstract from

phasing concerns. For example, the typing rules for Feather-

weight Java [15] and related calculi [3, 10, 20, 29] use class

tables and abstract from how and when class table entries

are constructed.

However, for type checker implementations, it is impor-

tant to construct and query name binding information (e.g.,

in a symbol table [1] or a scope graph [28]) in the correct order.
Attempting to resolve a name in a wrongly phased manner

can lead to subtle bugs. For example, consider the following

program with a nested module, where the reference x can
1
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be resolved to an imported definition and a definition in the

enclosing module:

1 module C {

2 def x: Int = 3

3 module D {

4 import E

5 def y: Int = x

6 }

7 }

8 module E {

9 def x: Int = 4

10 }

Since the nested module D imports E, the reference to x on
line 5 could resolve to either the declaration in C (line 2)

or E (line 9). Before we can resolve the right hand sides of

defs and the x on line 5, we should first resolve the E import

reference (line 4). This way, we know that the declarations

in E are reachable from D. However, a wrongly phased type

checker could fail to resolve imports before type checking the

right hand side of defs. In this case, x on line 5 would resolve
to the declaration on line 3. Since the intended semantics

of our language is that declarations from imports shadow

declarations from the lexical context, this silently resolves
names to the wrong declarations.
This paper presents abstractions for multi-phased type

checking that prevent such subtle errors. We contribute: (1) a

new interface of effectful operations for creating and query-

ing name binding information, using scope graphs [28, 33, 37,

38]; and (2) techniques that use applicative functors [9, 17, 24]
to map abstract syntax trees (ASTs) to compact, explicitly

phased, and effectful operations for type checking.

These contributions build on and extend previous work.

Our use of applicative functors builds on the work of Gibbons

et al. [9], and our scope graph operations are inspired by

Rouvoet et al. [33]. A key feature of our operations is that

they detect phasing errors during type checking and rule

out subtle phasing errors such as the one above. The Statix

language [33] provides this guarantee in a different way, via a

static ownership type discipline and a sound (but incomplete)

query scheduling algorithm. As we show in §5, our approach

supports language features which Statix does not.

Most programming language implementations resolve

names in multiple phases. For example, Haskell has a rela-

tively simple module system that uses two phases [11, §2.3.2].

Scala combines a range of sophisticated name binding fea-

tures such as inheritance, import statements, traits, type

members, dependent object types [2], and multi-staging [22]

in the MetaML tradition [35]. Languages such as Java, C#,

Kotlin, and Rust also have multi phase type checking.

Our operations also require computations to run in a

phased order. A naive approach to implementing this or-

dering is to traverse ASTs in multiple passes. However, such

passes add syntactic overhead compared to typing rules that

abstract from such phasing, as is common for typing rules

that use scope graphs [33, 38, 39]. We reduce the syntac-

tic overhead of type checker implementations by composi-

tionally mapping AST nodes onto monadic, multi-phased

computations, using generic combinators for implementing

the required phase ordering. This makes our type checker

implementations more compact than explicitly phased imple-

mentations, akin to how monadic parser combinators [14]

make parsers more compact than recursive descent parsers.

Our focus is on detecting phasing errors and on compact-

ness. We believe our approach is not fundamentally at odds

with efficiency but exploring this is left to future work. For

now, our type checker implementations are likely have a sub-

par performance compared with direct style type checkers.

We make the following technical contributions:

• Wepresent (in §3) amonadic interface of operations for

designing phased type checkers, using scope graphs.

The operations dynamically detect and report name

resolution phasing errors during type checking.

• Building on techniques for multi-phasing from Gib-

bons et al. [9] and Kidney and Wu [17], we present

(in §4) generic combinators for multi-phased compu-

tation where later phases may depend on values from

prior ones. In §4.5, we discuss how these techniques

make type checker implementations more compact

and more closely related to typing rules.

• We validate and evaluate our approach (in §5) by con-

sidering two case studies: a type checker for Mini-ML

that uses Damas-Hindley-Milner type inference, and

a type checker for a subset of the LM language due

to Neron et al. [28].

The paper is structured as follows. §2 gives an overview

of the problem and our solution. Then, §3 and §4 describe

the implementation of our scope graph operations and tech-

niques for phased computation using applicative functors.

§5 describes case studies, §6 related work, and §7 concludes.

The framework and case studies are available in an arti-

fact [32]. The abstractions in this paper are implemented in

Haskell, and familiarity with Haskell is assumed.

2 The Multi-phased Name Resolution
Problem and its Solution

Type checking generally requires producing name binding

information in multiple phases. How do we represent such

name binding information in typing rules and in compilers?

Typing rules most often use type environments that map

names to types. However, few such specifications model the

semantics of, e.g., modules or classes. In practice, compilers

traditionally use symbol tables [1]. The details of symbol

table implementations differ from language to language but

a symbol table generally represents a “scope”. It stores the

declared names of a scope, and (typically) the types of each

name. By linking symbol tables to other symbol tables [1,

§2.7], we can represent which scopes are reachable from the

2
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1 module F {

2 import G

3 def i: Int = j

4 }

5 module G {

6 import H

7 }

8 module H {

9 def j: Int = 5

10 }

𝑠𝑅F ∼ 𝑠F M

G ∼ 𝑠G
M

H ∼ 𝑠HM

𝑠G

P

𝑠F

P

𝑠H

P

I I j : IntDi : Int D

query j (P∗ · I? · D) ord

Figure 1. Name reachability example

1 module C {

2 def x: Int = 3

3 module D {

4 import E

5 def y: Int = x

6 }

7 }

8 module E {

9 def x: Int = 4

10 }

𝑠𝑅C ∼ 𝑠C M E ∼ 𝑠EM

𝑠C

P

𝑠E

P

x : IntD x : IntDD ∼ 𝑠D M

𝑠D

P I

y : IntDquery x (P∗ · I? · D) ord

Figure 2. Name shadowing example

current scope; for example, names in the lexical context or

names in imported modules. Compilers resolve names by

traversing reachable symbol table entries and links.

Scope graphs are a mathematical model of name binding

and name resolution that can be used as a stand-in replace-

ment for both symbol tables and and type environments.

A type environment typically represents the set of visible
names, whereas symbol tables represent the set of reachable
names and model visibility as a search through these. We

can think of a type environment as a “flattened” symbol table

resulting from applying the visibility search procedure. The

scope graph analogue to searching a symbol table is resolv-

ing a name resolution query. Thus scope graphs can replace

both symbol tables and type environments.

Following Visser and co-authors [28, 33, 37–39], we can

use scope graphs to define both typing rules and type checker

implementations. In this section we give an introduction to

scope graphs, the problem with phased name resolution,

and how we solve the problem using a new set of monadic

operations for scope graph construction.

2.1 Scope Graphs as a Model of Name Resolution
A scope graph is a data structure that represents the scopes

and declarations of a program. Scopes (nodes in the scope

graph) are conceptually similar to symbol tables, in that

each scope is associated with declarations, and each scope

may be connected to other scopes via directed, labeled edges.

Names are resolved by traversing edges in the scope graph

and inspecting declarations. With symbol tables, the name

resolution policy is given by a language specific algorithm

that traverses tables. Scope graph queries succinctly define

such traversals and name resolution policies. We illustrate

how scope graphs and queries provide a declarative model

of reachability and visibility (i.e., shadowing).

Reachability. A declaration is reachable if we can follow

directed edges through the graph to reach it. For example,

consider the program and scope graph in fig. 1. The program

(left) has three modules that transitively import each other:

F imports G and G imports H. On the right is its scope graph.

There are four scopes, denoted by circles. 𝑠𝑅 represents the

“root scope” of the program, which contains declarations

(labeled arrows from scopes) for each of the three mod-

ules. These declarations associate module names with their

scopes. For example, C ∼ 𝑠C associates C with scope 𝑠C . Mod-

ule scopes have declarations for each module member. Mem-

ber declarations associate names with types; e.g., i : Int
in 𝑠F . Labels on declaration edges indicates the kind of decla-

ration: D for module members (defs);M for modules. Labels

on edges between scopes indicates the scoping relation: P
for lexical parent relations; I for import relations.

Named references are resolved by querying the scope

graph. For example, the dashed blue box connected to 𝑠F

is a query for the named reference j (line 3). This name is

3



GPCE ’23, October 22–23, 2023, Cascais, Portugal Bach Poulsen, Zwaan, and Hübner

passed to the first argument of the query, which ensures only

declarations with name j are matched. As the dashed blue

edges show, it is possible to follow labeled edges to reach a j
declaration. However, this path does not reflect the intended

import semantics. The regex P∗ · I? · D of the query says that

a valid path has zero or more lexical parent edges, and at
most one import edge. The shown path has two import steps

so it does not match the query. The path would match if the

query allowed transitive imports; e.g., P∗ · I∗ · D. The third
argument of the query (ord) is an ordering relation on paths,
which defines the visibility semantics of queries.

Visibility. The example from the introduction is repeated

in fig. 2 (left). Its scope graph is on the right. The reference

to x on line 5 can resolve to either x on line 2 or line 9. Which

we prefer depends on the visibility semantics, given by an

ordering relation on paths. This ordering decides which of

the two blue paths (both valid according to the query reach-

ability regex) shadows the other. Any type of ordering is

possible, but a partial order on labels (−<− ⊆ Label × Label)
is sufficient for many languages.

1
For the example in fig. 2:

1. If P < I then we prefer declarations reachable via the

lexical context over via imports. A step-wise compari-

son of the paths in the figure gives precedence to the

path through 𝑠C , and the declaration on line 2 shadows

the one on line 9.

2. If I < P then we prefer declarations reachable via

imports over via the lexical context. A step-wise com-

parison gives precedence to the path through scope

𝑠E , and the declaration on line 9 shadows line 2.

3. If neither P ≮ I nor I ≮ P, then neither declaration is

preferred, and the x reference on line 5 is ambiguous.

2.2 The Multi-phased Name Resolution Problem
Scope graphs (like symbol tables) are data structures contain-

ing name binding information. The question is: how do type

checkers build this data structure in a way that guarantees

all relevant information is available before querying? A key

challenge of guaranteeing this is that, to build some parts of

the data structure, we need to query it (i.e., resolve names).

For example, to construct the import edge between 𝑠D and 𝑠E

in fig. 2, we must first resolve E (line 4). As discussed in the

introduction, failing to construct this import edge before

resolving x on line 6 causes our type checker to subtly fail.

The next section summarizes how we address this challenge.

2.3 A Monadic Solution to the Multi-phased Name
Resolution Problem

We introduce monadic operations for scope graph construc-

tion and querying that implicitly check that queries are sta-
ble; i.e., new edges and declarations do not change the results

1
Some languages need a more general path ordering. For example, the

MiniStatix specification of Scala compares full paths: https://github.com/M
etaBorgCube/scala.mstx#scala-precedence-as-a-path-order

of previously executed queries. We illustrate query stability

by example shortly. First, using M as the type of our monad

for scope graph construction, our operations are:

new ::M Scope
edge :: Scope→ Label → Scope→ M ()
sink :: Scope→ Label → Decl → M ()
query :: Scope→ (Decl → Bool) → RegEx Label

→ (Path Label Decl → Path Label Decl → Bool)
→ M [Path Label Decl ]

Here new creates a new scope, edge s l s′ creates an l-labeled
edge between scopes, sink s l d creates an l-labeled edge

to a declaration (i.e., a node with no direct outgoing edges),

and query s dm re ord resolves declarations matching the

predicate dm starting in scope s, using the reachability regex
re, and ordering paths according to ord. The operations are
parameterized by the types of Label and Decl while a Path is

a sequence of labeled steps between scopes ending in a Decl.
To illustrate what it means for a query to be stable, con-

sider the following example and its scope graph:

1 example = do
2 s0 ← new
3 sink s0 D (Decl "x" intT )
4 s1 ← new
5 edge s1 P s0
6 r ← query s1 (isDecl "x")
7 (P∗ · D)
8 shortest
9 pure r

𝑠0 x : IntD

𝑠1

P

x

Here isDecl "x" matches a Decl named "x", and shortest
prefers shorter paths, ignoring labels. The function pure ::
∀a. a→ M a used on line 9 is a “pure” computation which

returns a value as result without any side effects.

Extending the program with the declaration on line 9 be-

low, the query on line 6 gives the same result. However, this

result is not a valid resolution in the final scope graph!

1 example′ = do
2 s0 ← new
3 sink s0 D (Decl "x" intT )
4 s1 ← new
5 edge s1 P s0
6 r ← query s1 (isDecl "x")
7 (P∗ · D)
8 shortest
9 sink s1 D (Decl "x" boolT )
10 pure r

𝑠0 x : IntD

𝑠1

P

x : BoolDx

In multi-phased type checkers, a query whose result changes

depending on when it is run may give rise to subtle name

resolution errors. Our operations avoid this by checking that

queries are stable and raising an error if they are not.

4
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The following law says that a query is stable if its or-

der of execution is independent from any (possibly graph

constructing) computation m:

©­«
do m

query s dm re ord ª®¬ ≡ ©­«
do xs← query s dm re ord

m
pure xs

ª®¬
As example and example′ show, this law does not hold in

general. However, our operations do satisfy the following

law where −≡⊥− holds if both sides agree or if either side
raises a stability error, indicating that a query result may

have been violated:©­«
do m

query s dm re ord ª®¬ ≡⊥ ©­«
do ys← query s dm re ord

m
pure ys

ª®¬
§3 describes how our monad guarantees this property.

In summary, our monadic operations detect and reject

type checker runs with phasing errors but do not statically

guarantee their absence. Type checker engineers must there-

fore phase type checking in a way that avoids such errors.

One solution is to implement multiple phases using multiple

AST traversals. A more compact solution which we describe

in §4 is to use a single pass to map AST nodes onto phased

computations.

3 Monadic Scope Graph Construction
We consider how the operations discussed in the previous

section construct scope graphs, and how they detect and

reject programs with stability errors.

3.1 An Interface for Scope Graph Construction
Below is a type class that captures this monadic interface

discussed in §2.3:
2

class Monad m⇒ SG l d m | m→ l d where
new ::m Scope
edge :: Scope→ l → Scope→ m ()
sink :: Scope→ l → d → m ()
query :: Scope→ (d → Bool) → RegEx l

→ (Path l d → Path l d → Bool) → m [Path l d ]
One of our core contributions is that we provide an instance

of this interface. The instance we provide in the code accom-

panying this paper [32] is defined using a Haskell embedding

of algebraic effects and handlers [30]. The benefit of defining
our instance in this way is that it is easy to compose the

effects summarized by the SG interface above with other

effects. For example, the case studies in §§5.1 and 5.2 make

use of auxiliary effects for unification (used for type infer-

ence), emitting errors and backtracking. However, the details

of embedding algebraic effects and handlers in Haskell are

2
The | m→ l d part indicates a functional dependency. That means that

l and d should be determined by m. I.e., for any given m, there may be at

most one pair of l and d such that a type class instance of SG l d m exists.

beyond the scope of this paper. We summarize at a high level

how our code implements the operations and invite readers

to consult the code for further details.

Representing Scope Graphs. Our operations construct
new nodes, edges, and sinks in scope graphs given by the

following record type:

type Scope = Int
data Graph l d

= Graph { scopes :: Scope
, edges :: Scope→ l → [Scope ]
, sinks :: Scope→ l → [d ] }

We use integers to represent scopes such that we have an

infinite supply of fresh scopes. Edges in the graph are given

by a (curried) mapping from scope-label pairs to a (possibly

empty) list of target scopes. Declarations (or sinks) are simi-

larly defined. The implementation of the operations in SG
threads Graphs through in a stateful manner.

A naive implementation of new, edge, and sink would sim-

ply update the graph, and query would simply traverse the

current graph to findmatching paths. However, this naive im-

plementation would suffer from the query stability problem

discussed in the introduction and §2.2.

Detecting Stability Errors. Our implementation detects

and reports stability violations; i.e., additions to the scope

graph that cause an earlier query to give a different result. A

simple but expensive way (in terms of runtime) to implement

this check is to cache every querymade during type checking,

and then re-run every query when adding sinks or edges.

Our operations implement a less expensive approach.

We associate each scope with residual queries which pre-

cisely define the traversals that have started from that scope

in the past. When adding a new edge or declaration we ex-

ecute that traversal over the new edge, as though the past

query was run on the newly extended graph, and check

that the query result remains unchanged. To illustrate, con-

sider the scope graph on the left and the (truncated) residual

queries for s0 and s1 on the right:

𝑠1 x : IntD

𝑠0

P

query x (P+ · D) ord

s0 ↦→ . . .

s1 ↦→
[Residual
(isDecl "x") (P∗ · D) ord
(s0 · P · s1)
[ s0 · P · s1 · D · x : Int ] ]

The first three arguments of Residual represents the state of
the query that traversed scope s1 to resolve the blue path.

Since the query already traversed a P edge, the second argu-

ment is the derivative [4] of the original regex with respect

to P. The fourth argument (s0 ·P · s1) is the path leading from

the source scope (s0) to the current (s1). The last argument is

the final result of the original query at the time it was run.

5
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Say we extend scope 1 with a new P-labeled edge to a

new scope 2 , as shown below:

𝑠2

𝑠1

P

x : IntD

𝑠0

P

query x (P+ · D) ord

s0 ↦→ . . .

s1 ↦→ . . .

s2 ↦→
[Residual
(isDecl "x") (P∗ · D) ord
(s0 · P · s1 · P · s2 )
[ s0 · P · s1 · D · x : Int ] ]

In doing so, we enact the residual queries of s1 which in turn

associates a new residual query with 2 . The residual for 2

is the same as for 1 except that the path leading from the

source scope to the current scope now has an additional step,

highlighted in gray.

Now say we extend 2 with a new x declaration. The sink
operation first adds this declaration to the scope graph and

then enacts the residual queries of 2 . This enactment yields

a valid path since s0 · P · s1 · P · s2 · D · x : Int matches the

(original) regex. This path is compared with the original set

of paths using the ordering ord. If the path is not shadowed

by any of the original paths in the residual, a changed query

result is detected, and we raise a stability error.

Over-Approximating Stability Errors. The stability er-

ror detection described above is precise. However, that can

make it hard to write tests that expose phasing errors. An

approach that over-approximates stability but detects com-

mon phasing anti-patterns is sometimes desirable. The code

artifact accompanying this paper implements both the pre-

cise stability error detection discussed above and the over-

approximation we describe next. Let us revisit the example

from before.

𝑠1 x : IntD

𝑠0

P

query x (P+ · D) ord

s0 ↦→ {P}
s1 ↦→ {P,D}

The head set (i.e., the set of characters that words accepted
by the regex start with) of the query regex P+ · D is {P}, so
all outgoing P edges of 0 are traversed by the query. If we

add a new P edge to 0 later, new declarations may become

reachable which may give rise to stability errors. Our over-

approximation of stability errors prevents this possibility by

“closing” scope 0 under P. 1 is closed under both P and D
because the head set of the query upon reaching 1 is {P,D}.
Attempting to add an edge or sink of a label that a scope is

closed under raises a stability error.

Discussion. The code accompanying this paper contains

implementations of both of the stability error strategies de-

scribed above. While the over-approximating approach is

more coarse grained, it enforces a certain programming dis-

cipline: we should only resolve names via a scope once all

of the edges that the query may traverse have been added.

Failing to follow this principle causes our interface to raise

(potentially over-approximate) stability errors. In our expe-

rience, this helpfully pinpoints dubious phasing patterns in

multi-phased type checkers.

Our implementation of both strategies satisfy the query

stability law discussed in §2.3; i.e., for any m, s, d, r, and o:

dom;query s d r o ≡⊥ do xs← query s d r o;m;pure xs (∗)

3.2 Explicitly Phased Type Checking
The previous section discussed how our monadic operations

detect and reject stability errors. Let us consider how we can

use these operations to define multi-phased type checkers

for a simple module language whose abstract syntax is:

data MDec = Import String | Def String Ty Expr
| Module String [MDec ]

data Expr = Ident String | Lit Int | Tru | Fals
data Ty = IntT | BoolT

MDec defines module member declarations (imports, defs,
and modules), Expr expressions, and Ty types. For simplic-

ity, expressions can only be identifiers, integer literals, or

Boolean literals.

We can define an explicitly phased type checker for this

language that uses three phases:

top :: SG Label Decl m⇒ MDec → m ()
top m = do s← new

(q1, q2) ← modules m s
imports q1
members q2

modules :: SG Label Decl m⇒ MDec → Scope
→ m ( [ (Scope, String) ], [ (Scope, (Ty, Expr)) ])

imports :: SG Label Decl m⇒ [ (Scope, String) ] → m ()
members :: SG Label Decl m⇒ [ (Scope, (Ty, Expr)) ]

→ m ()

Here top orchestrates three phases which do the following.

modules takes as input anMDec and its scope, and elaborates
it into two working lists. As part of this elaboration, def
declarations are added to their corresponding scopes, scopes

are created for nested modules, and lexical parent (P) edges
connect these module scopes to their lexical parents. The

first working list represents import to be added to that scope,

which is generally only possible once we know all module

names. The second represents expressions to type check in

that scope, which is generally only possible once all names

6
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are imported. These working lists are processed in separate

phases, using the imports and members functions.
The explicit phasing in top above uses three traversals:

one over the abstract syntax to turn it into two working lists

which we traverse next. A more compact alternative that

does not use artificial intermediate working lists, is to map

abstract syntax nodes onto phased computations that check

well typedness, in a single traversal. We show how next.

4 Applicative Phasing and Its Application
to Scope Graph Construction

As recently demonstrated by Gibbons et al. [9] and Kidney

and Wu [17], applicative functors provides a useful abstrac-

tion for phased computation. In §4.1 we recall the concept of

applicative functors. Next (§§4.2 and 4.3), we describe how

and why we build on and adapt the techniques of Gibbons

et al. [9]. Then §4.4 shows how to implement type checkers

using applicative functors. Finally (in §4.5) we compare a

case from a type checker written in this style with its corre-

sponding typing rule.

4.1 Applicative Functors
Applicative functors are a standard feature in many Haskell

libraries. These libraries usually use the Applicative type

class [24].
3
We use the following alternative but equivalent

category theory inspired interface [24]:
4

class Functor f ⇒ Monoidal f where
unit :: f ()
(★) :: f a→ f b→ f (a, b)

As we will see, the Monoidal interface is well-suited for

defining phased computations, and we use that instead of

the Applicative interface. If we think of f as a computation,

the unit operation represents a pure computation return-

ing a unit value whereas ★ combines two computations.

The operations are subject to the following laws where

(f × g) (x, y) = (f x, g y) and assoc (a, (b, c)) = ((a, b), c):
fmap (f × g) (m1 ★m2) ≡ (fmap f m1) ★ (fmap g m2)

fmap snd (unit ★m) ≡ m

fmap fst (m★ unit) ≡ m

fmap assoc (m1 ★ (m2 ★m3)) ≡ (m1 ★m2) ★m3

Next, we consider how to use ★ to compose multi-phased

computations.

4.2 Functor Composition and Phasing
In the module language in §3.2, nested modules pose a phas-

ing challenge. The challenge is that, before we can resolve

imports, we need to know the names of all modules. Thus,

phase 1 first creates the scopes of all modules; and only then

3https://hackage.haskell.org/package/base-4.18.0.0/docs/Control-
Applicative.html
4
In categorical terms, an applicative functor is a strong lax monoidal functor.

do we, in phase 2, resolve named imports. §3.2 used multi-

ple traversals to implement this phasing. With applicative

functors we can use a single traversal that returns a phased
computation directly. But what is a phased computation?

The answer that Gibbons et al. [9] give to this question

is Day convolutions. Briefly summarized, a Day convolution

Day f g a consists of a pair of two applicative functors, f
and g, which represent two distinct phases. The idea is to

construct phased computations using two functions:

phase1 :: (Monoidal f ,Monoidal g) ⇒ f a→ Day f g a
phase2 :: (Monoidal f ,Monoidal g) ⇒ g a→ Day f g a

Because Day convolutions are applicative functors them-

selves, computations can then be freely combined, in any

order, using the ★ operation. In particular, the following

holds for anym1 :: f a andm2 :: g b where f , g are applicative
functors:

phase1 m1 ★ phase2 m2 ≡ fmap twist ( phase2 m2

★ phase1 m1)
where twist (x, y) = (y, x)

An attractive property of Day convolutions is that, in order

to run a phased computation Day f g a, we only need to

assume that f and g are themselves applicative functors. This

means that Day convolutions can be used to phase a general

class of computations, including monads since (in Haskell)

all monads are applicative functors.

However, Day convolutions generally do not allow using

of results from prior computations in subsequent ones, which

is a common pattern in multi-phased type checkers. For

example, if we infer the module type (associating member

names to types, which we represent as a Scope) in a prior

computation, we want a subsequent computation to use this

module type to check that expressions in module members

are well typed. That is, for two applicative functors f and g,
we want to phase m :: f Scope and k :: Scope → g a where

the Scope to pass to k is the one that m computes.

Consider howwemight try to write this using only phase1,
phase2, and the applicative functor product ★:

canWeDoThis = phase1 m★ phase2 (k ?? )
This will not work: ★ combines m and k in a way that their

computations are independent, so we cannot fill in ?? with

the result ofm in this way. In fact, applicative functors gener-

ally do not allow the use of results from prior computations

in the definition of subsequent ones, so we cannot in general

write this program using only phase1, phase2, and ★.
Instead, we could use the operations of m and k to pass

information along from a prior computation to a subsequent

one. For example, if m has operations for outputting values

and k has operations that read such values as input, we can

wire the outputs fromm to inputs of k. For some applications,

such wiring is natural; for example, the phased solution to

the repmin problem considered by Gibbons et al. [9]. We

7
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might use a similar scheme for our type checkers, but then

we need to label the scopes produced in a prior phase so that

we can retrieve the intended module type by dereferencing

the correct label in subsequent phases.

Instead of relying on such a labeling scheme, we use

functor composition and monads. This lets us use Haskell

functions—specifically, the two combinators we introduce in

§4.3—to wire outputs to inputs such that (1) we do not have

to invent a labeling scheme for labeling outputs produced in

prior phases and unlabeling them in subsequent ones, and

(2) the underlying monads do not need to support operations

for output and input of labeled data. The downside is that we

rely on binding combinators other than monadic bind. On

the other hand, our combinators rely on standard machinery

(functor composition and monadic bind), and provide a typed

interface that helps enforce phase consistency.

The combinators we will introduce in the next section are

based on functor composition; i.e.:

newtype (f ◦ g) a = Comp {getComp :: f (g a) }

We use composed functors f ◦ g to represent phased compu-

tations where f computations run in the first phase, and g
in the second. We will exploit that g is nested inside f since

this makes it possible for the g computation to directly de-

pend on the values produced by the outer f computation. We

show how in §4.3. First, we define some auxiliary and stan-

dard
5
functor composition helper functions. First, composed

functors are themselves functorial:

instance (Functor f , Functor g) ⇒ Functor (f ◦ g) where
fmap f (Comp x) = Comp (fmap (fmap f ) x)

Second, composed applicative functors are also applicative:

instance (Monoidal f ,Monoidal g)
⇒ Monoidal (f ◦ g) where

unit = Comp (fmap (const unit) unit)
Comp x ★Comp y = Comp (fmap (uncurry (★)) (x ★ y))

ThisMonoidal instance lets us compose phased computations

in any order, similarly to Day convolutions. In particular, the

functions below are analogous to phase1 and phase2:

here :: (Functor f ,Monoidal g) ⇒ f a→ (f ◦ g) a
here m = Comp (fmap (𝜆x → fmap (const x) unit) m)
there ::Monoidal f ⇒ g a→ (f ◦ g) a
there m = Comp (fmap (const m) unit)

The following holds for any m1 :: f a and m2 :: g a where f
and g are applicative functors:

here m1 ★ there m2 ≡ fmap twist (there m2 ★ here m1) (†)

5https://hackage.haskell.org/package/base-4.18.0.0/docs/Data-Functor-
Compose.html

4.3 Chaining Phases
While here and there combine phased computations, they do

not allow us to define phases where later phases explicitly

depend on values produced by earlier phases. The following

functions do:

(◦>−) :: Functor f ⇒ f a→ (a→ g b) → (f ◦ g) b
m ◦>− k = Comp (fmap k m)
(◦>>−) ::Monad f ⇒ f a→ (a→ (f ◦ g) b) → (f ◦ g) b
m ◦>>− k = Comp (m >>= (getComp ◦ k))

Both functions define a two-phased computation where the

second phase may depend on the first. Both m ◦>− k and

m ◦>>− k assume that m is a phase 1 computation. The differ-

ence is that m ◦>− k assumes that the effects in k are phase 2

computations, whereasm◦>>−k allows k to have both phase 1

and phase 2 computations. The latter uses the monadic bind

of f to sequence m with the phase 1 computations in k. In
the next section we illustrate how the combinators above

can be used to phase computations in type checkers.

4.4 Implicitly Phased Scope Graph Construction
Using the machinery from sections 4.1 to 4.3 we can use a

single traversal over ASTs to construct a phased computation

representing the type checking constraints of a program.

Figure 3 (left) shows the cases of a type checker for the

MDec type of the module language from §3.2. On the right

in the figure are the corresponding typing rules which we

will discuss in §4.5. In addition to the SG monad type class

from §3.1, it uses the following error monad type class:

class Monad m⇒ Err m where err :: String → m a

The type signature on line 2 shows that the mdec function
produces a computation in three phases where each phase

has the same set of effects (m). The Module case of mdec
function on line 3-7 uses ◦>>− to create a module scope and

declaration in phase 1, and passes the created scope to the

computation which uses the traverse function to recursively

call mdec to check module member declarations where:
6

traverse ::Monoidal f ⇒ (a→ f b) → [a] → f [b]

Here traverse uses Monoidal to compose the phased compu-

tations resulting from recursively calling mdec in a manner

that respects eq. (†) from §4.2. The use of ◦>>− composes the

phase 1 computation on line 4-6 with the phase 1 computa-

tions recursively created by mdec calls in line 7.

Lines 8-13 of fig. 3 use there (here . . .) on line 8 to insert

the computation on line 9-13 in phase 2. The computation

resolves a named import and creates an import edge be-

tween the current scope and the resolved module scope. For

simplicity, the module language and query on line 9 only

6https://hackage.haskell.org/package/base-4.16.0.0/docs/Data-Traversabl
e.html
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1 mdec :: (SG Label Decl m, Err m)
2 ⇒ MDec → Scope→ (m ◦m ◦m) ()

3 𝑚𝑑𝑒𝑐 (Module x mds) s 1

= void

4 ((do sm ← new 2

5 sink s M (ModDecl x sm)
3

6 pure sm) ◦>>− 𝜆sm →
7 (traverse (𝜆m→ mdec m sm) mds) 4 )

∇𝑠𝑚
2

𝑠 M (𝑥 ∼ 𝑠𝑚)
3

𝑠𝑚 ⊢𝑚𝑑𝑠 ok
4

𝑠 ⊢ module 𝑥 {𝑚𝑑𝑠} ok 1

8 𝑚𝑑𝑒𝑐 (Import x) s 5

= there (here (do

9 ps← query s (isModDecl x) (P∗ ·M) pCompare 6

10 case map scOf ps 6 of

11 [Just si ] → edge s I si
7

12 → err "bad import"))

query 𝑠 (isModDecl 𝑥) (P∗ ·M) pCompare ⇝ {(𝑥 ∼ 𝑠𝑖 )}
6

𝑠 I 𝑠𝑖
7

𝑠 ⊢ import 𝑥 ok

5

13 𝑚𝑑𝑒𝑐 (Def x t e) s 8

= void

14 ( here (sink s D (DefDecl x t)) 9

15 ★ there (there (expr e s t) 10 ))

𝑠 D 𝑥 : 𝑇
9

𝑠 ⊢ 𝑒 : 𝑇 10

𝑠 ⊢ def 𝑥 :𝑇 = 𝑒 ok
8

Figure 3. Representative cases of a type checker for the module language from §3.2.

allows modules to be resolved via lexical scoping; i.e., by fol-

lowing P edges until an M-labeled edge leading to a module

declaration is found. Also for simplicity, themodule language

does not support qualified (module) names. Thus, module

import resolution in this language is relative (i.e., imports are

resolved starting in the scope where they occur), unordered
(imports can occur anywhere and will be in scope for the en-

tire module), glob (also known as wildcard—i.e., they import

all definitions from a module), and import insensitive (i.e.,
modules cannot be resolved via import statements; only via

the lexical context). In §5.2 we show how to support import
sensitive module resolution (i.e., modules can be resolved via

import statements) as well as type inference.

The final case in fig. 3 uses ★ to compose a phase 1 and a

phase 3 computation which, respectively, creates a declara-

tion for the Def in the current scope, and then checks the

expression of the Def .

4.5 Correspondence to Typing Rules
The code on the left in fig. 3 defines a type checker for the

rules shown on the right in the same figure. The typing

rules are written in a similar style as in the work of van

Antwerpen et al. [38]. The rules themselves are transcribed

from the MiniStatix specification of LM due to Rouvoet et al.

[33], except that the rule for imports only allows enclosing

modules to be imported. In contrast, the MiniStatix spec-

ification of LM due to Rouvoet et al. [33] has support for

import sensitive module resolution which we will show how

to type check in §5.2 The colors and numbers indicate how

each premise and conclusion of the typing rules is checked

in our type checker. Each case ofmdec corresponds with one

of the rules, and all premises correspond to an expression

within the case. Besides the standard do keyword, the un-

colored parts of the code either (1) phase the type checker

using here, there, ★, and ◦>>−, (2) perform error handling, or

(3) use void :: Functor f ⇒ f a → f () to discard return

values to match the type signature. In contrast, in the type

checker discussed in §3.2, the premises would be scattered

across different functions: declarations are created by the

modules function, whereas the right hand sides of defs are
type checked by the members function.

5 Case Studies
Wepresent two case studies (also included in the artifact [32])

that explore the expressiveness of our approach. First, §5.1

shows how Damas-Hindley-Milner type inference (i.e. Al-

gorithm W [7]) can be implemented using our approach.

Next, we extend the language from §§3.2 and 4.4 with im-
port sensitive module resolution. Both case studies could

not be operationalized in previous scope graph based frame-

works [33, 39].

5.1 Mini-ML with Damas-Hindley-Milner Inference
According to Zwaan and van Antwerpen [39], one of the

primary limitations of Statix is its lack of support for Damas-

Hindley-Milner-style type inference [6]. Here we present

9
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the first scope graph based type checker for MiniML [16],

a language with let polymorphism [26]. The language has

the usual 𝜆 calculus constructs, as well as let bindings and

number literals/addition. Its (truncated) syntax is:

data MiniML
= Ident String
| Let String MiniML MiniML
| . . .

To infer types for MiniML we will make use of operations for

generating new meta-variables and unify first-order terms

given by the following syntax:

data Term = Var Int | Term String [Term]
Here we use integer indices to distinguish different variables.

We use terms to represent types, and use the following smart

constructors for number and function types:

type Ty = Term
numT = Term "Num" [ ]
funT s t = Term "->" [ s, t ]
The operations of the type class below generate new meta-

variables (Vars) and unify terms:

class Monad m⇒ Unif m where
exists ::m Term
equals :: Term→ Term→ m ()
inspect :: Term→ m Term

Here exists creates a new meta-variable (e.g., Var x where x
is a fresh integer); equals t1 t2 either unifies t1 and t2 or raises
an error if they cannot be unified; and inspect t inspects a
term, applying all substitutions resulting from previously

performed unifications.

Polymorphic types (type schemes) in MiniML are given by

the Scheme data type.

data Scheme = Scheme { sbinds :: [ Int ], stype :: Ty }
Using schemes as the type of declarations, our type checker

uses a single phase and is given by the mml function whose

type is shown below:

data Label = P | D
data Decl = Decl String Scheme

mml :: (SG Label Decl m, Err m,Unif m)
⇒ MiniML→ Scope→ Ty → m ()

The function takes as input aMiniML expression, the current
Scope, and the Type that the input expression should be

checked to have. We use unification to infer the type. If the

type of the input expression is not known beforehand, the

Ty argument of mml is a unification variable.

The implementation ofmml follows Algorithm W [7]. We

consider two of the most interesting cases, starting with the

case for variables.

1 mml (Ident x) s t = do
2 ps← query s (isDecl x) (P∗ · D) pShortest
3 case map schemeOf ps of
4 [ sc ] → do dt ← inst sc; equals t dt
5 → err ("bad identifier: " ++ x)
6 inst :: Unif m⇒ Scheme→ m Term

The query on line 2 resolves the identifier. If the query

succeeds, we call inst to instantiate the type scheme, and

then unify the resulting term with the input type t (line 4).
The (elided) implementation of inst substitutes the variables
bound by the type scheme by fresh variables.

The other interesting case is for let bindings:

1 mml (Let x e body) s t = do
2 t′ ← exists
3 mml e s t′

4 t′′ ← inspect t′

5 st ← gen s t′′

6 s′ ← new
7 edge s′ P s
8 sink s′ D (Decl x st)
9 mml body s′ t

Lines 2-3 introduce a fresh unification variable t′ and use it

to infer the type of the let bound expression e. Next, on lines

4-5, we first inspect the inferred type, and then call gen to

generalize the type relative to the current scope s and create

a new type scheme st. This scheme becomes the type of x
declared in the sub-scope s′ used to check the body of the

let expression (line 6-9). Here gen is defined as follows:

gen :: SG Label Decl m⇒ Scope→ Term→ m Scheme
gen s t = do

ps← query s (const True) (P∗ · D) noOrd
let fvs = concatMap (fv ◦ stype ◦ schemeOf ) ps
pure (Scheme (fv t \\ fvs) t)

It first collects all declarations in scope, using (const True) to
match any and all declarations and noOrd to prevent shadow-

ing. Then, it projects all free variables of declaration types,

using the utility function fv :: Ty → [ Int ]. This is analogous
to how Algorithm W [7] inspects all free variables in a type

environment. Finally, it creates a scheme that quantifies over

the truly free variables in t; i.e., variables that do not occur

in types reachable from the current scope (fvs).

Discussion. This case study shows that the lack of sup-

port for Damas-Hindley-Milner type systems in Statix is not

a limitation of scope graphs. In fact, the generalize operation,
as traditionally defined on environments, maps rather natu-

rally to scope graphs, when given control over the order of

operations and the ability to inspect terms. While the defini-

tion of MiniML only uses lexical scoping, our mml, gen, and
inst functions can be extended to support non-lexical scoping
(e.g., modules and imports) without significant changes.

10
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1 module A {

2 module B {

3 def x = 42

4 }

5 }

6 module M {

7 import B

8 import A

9 def y = x

10 }

𝑠𝑅

𝑠A 𝑠M

𝑠B

A ∼ 𝑠A

M ∼ 𝑠M

B ∼ 𝑠B

y : Intx : Int

query B (P∗ · I? ·M) ord

P P

P

M
M

M

D

D

I

I

Figure 4. A program and scope graph with import sensitive

module resolution.

1 module A {

2 module A {}

3 }

4 module M {

5 import A

6 }

𝑠𝑅

𝑠A

𝑠M

𝑠 ′A

A ∼ 𝑠A

M ∼ 𝑠M

A ∼ 𝑠 ′A

query A (P∗ · I? ·M) ord

P

P

P

M

M

M

Figure 5.An ambiguous program and its partial scope graph.

The program has no model, as adding an import edge from

𝑠M to 𝑠A contradicts its own resolution via the P edge to 𝑠𝑅 .

5.2 Language with Modules (LM)
Our second case study is LM, a proof-of-concept language by

Neron et al. [28]. LM is similar to the simple module language

that we gave a type checker for in §3.2, with two important

differences: (1) LM has optional type annotations and relies

on (monomorphic) type inference; and (2) LM uses import
sensitive module resolution (in contrast to the example in §4.4

and fig. 3).

Import Sensitive Module Resolution. Consider the ex-
ample in fig. 4. The imports on line 7 and 8 are unordered and

import sensitive, in the sense that module names can be re-

solved through other imports. The A import on line 8 resolves

via the lexical context, to the declaration on line 1. Because

of this, 𝑠M has an import edge to 𝑠A in the scope graph. The B
import is resolved using the query shown in the figure. The

regex of this query allows modules to be resolved via an

import edge (that is, it is import sensitive). Therefore, the
import edge to 𝑠A can be used to resolve module B, resulting
in an edge to 𝑠B .

The combination of unordered imports and import sensi-

tive module resolution has a subtle semantics in some cases.

For example, consider fig. 5 (borrowed from Hübner [13]). It

is possible to resolve the A import on line 5 to the A declara-

tion on line 1 along the shown path. Because of this resolu-

tion, we should add an import edge between 𝑠M and 𝑠A in

the scope graph. But, if we add this edge, then the query in

the figure becomes unstable. In LM, imports have precedence

over the lexical context, so the added edge would cause the

query in the figure to resolve to the (inner) A declared in 𝑠A

instead of 𝑠𝑅 . Because no graph exists where all names can

be stably resolved, the program has no model.

This subtlety illustrates a key challenge of type checking

LM programs. Because module resolution is unordered and

import sensitive, each import may depend on an arbitrary

sequence of other imports. So how do we decide which the

order imports should be resolved in?

Implementation. Figure 6 shows how we implement im-

port resolution. The highlights on the left summarize differ-

ences from §4.4, fig. 3. These differences stem from how we

deal with import resolution. Because of import sensitivity,

we use an Aggr functor to aggregate the list of all imports

to be resolved in phase 2. As shown in the type of lm on

line 3, this functor is inserted between phase 1 and phase 2.

Its definition and relevant Monoidal instance is:

data Aggr r a = Aggr r (r → a) deriving Functor

instance Monoid r ⇒ Monoidal (Aggr r) where
unit = Aggr mempty (const ())
Aggr xs m★Aggr ys n =

Aggr (xs <> ys) (𝜆r → (m r, n r))
ThisMonoidal instance assumes that r is a monoid, and uses

the monoidal product (<>) for aggregation. In line 11 in fig. 6

we use Aggr to aggregate all imports, indexed by a scope. In

line 9, we bind the final aggregation to variable is and call

imps to perform import sensitive module resolution.

The imps function on the right in fig. 6 implements import

sensitive module resolution. The most challenging part of

this is that we do not know the correct order in which the

imports must be resolved. To compute that, we must be able

to speculatively add edges and do queries, backtracking if

an import fails. To implement this, we use the anyOrder
operation:

class Monad m⇒ AnyOrder m where
anyOrder :: [m (Maybe ()) ] → m () → m ()

This operation implements the following kind of error han-

dling behavior. The first parameter is a list of computations

that may fail (i.e., return Nothing). The operation tries to

find an order to execute these computations in which (1) all

computations succeed, and (2) there are no stability errors.

If no such order exists, the second argument is invoked to

handle the failure.

Lines 14-16 uses the anyOrder operation to search for a

stable import resolution order. The first argument is a list

of computations that resolve each import, given by is s, of a
module. If no stable order is found, the second argument is

run to raise an error.

The type checker in fig. 6 was validated using (1) 15/19 of

the test cases of Rouvoet et al. [33] (we excluded four because

11
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1 lm :: (SG Label Decl m, Err m,Unif m, AnyOrder m )
2 ⇒ LMDec → Scope
3 → (m ◦ Aggr (Scope→ [String ]) ◦m ◦m) ()
4 lm (Module x mds) s = void
5 ( (do s′ ← new
6 sink s M (ModDecl x s′)
7 pure s′) ◦>>− 𝜆s′ →
8 traverse (𝜆m→ lm m s′) mds
9 ★ there (Aggr (const [ ]) id ◦>− 𝜆is→ here (imps is s′)) )

10 lm (Import x) s =
11 there (here (Aggr (𝜆s′ → [x | s ≡ s′ ]) (const ())))
12 imps :: (SG Label Decl m, Err m,Unif m,AnyOrder m)
13 ⇒ (Scope→ [String ]) → Scope→ m ()
14 imps is s = anyOrder
15 (map (𝜆i→ resolveMod i s) (is s))
16 (err "Could not resolve imports")

Figure 6. Representative cases of a type checker for LM.

they used qualified names, which are not included in our

language), (2) seven additional test cases from Hübner [13],

and (3) two new test cases for query stability corner cases.

Unlike Statix, all cases pass.

Discussion. Certain optimisations over this scheme are

conceivable. For example, failures can help to prune the re-

maining permutations. When an import query is invalidated

by another import, all permutations containing imports in

the same order can be filtered. Similarly, when an import

does not resolve, we only need to retain permutations that

have at least one unresolved import before the failing one.

While backtracking over all permutations seems expen-

sive, it is an improvement over other approaches found in the

literature. NaBL2 [37] re-resolves imports at every reference,
even variables inside a scope, while we perform import reso-

lution once per module. Apart from this, we are not aware

of any implementation for such a module system.

6 Related Work
We discuss related work on scope graphs and phasing.

6.1 Scope Graphs
Scope graphs were originally introduced by Neron et al. [28].

In their model, imports are first-class, whereas we model

them using queries and edges. Van Antwerpen et al. [37]

introduce NaBL2, a type system specification meta-language

using scope graph for name resolution. To cover more type

systems, van Antwerpen et al. [38] refined the scope graph

model, and embedded it in the logic language Statix [38].

We use this model in this paper. In contrast to Neron et al.,

this model allows interleaving of scope graph construction

and querying. Statix is a declarative language, in which a

model satisfying all constraints is found by constraint solving.

This gives rise to a scheduling problem: when can queries

be executed without later edge additions invalidating the

result. The answer given by Rouvoet et al. [33] is, whenever

the query does not traverse scopes that have critical edges;
i.e., edges that give rise to new paths for the query. Since

finding critical edges is as difficult as solving the constraint

program, Rouvoet et al. use weakly critical edges, an over-

approximation of critical edges which can be inferred by a

static analysis of Statix rules. In our approach, phasing is

done manually, as opposed to automatically by Statix. As our

case studies show, this lets us type check languages beyond

what Statix supports. On the other hand, Statix supports

dynamically scheduled scope graph construction which may

be difficult to support in our explicitly phased approach.

Our over-approximating stability error detection from

§3.1 implements the dual of weakly critical edges: instead

of scheduling queries after no edges are added anymore,

we prevent adding edges after a query traversed that edge.

Our precise stability error detection from §3.1 detects real

critical edges, which is not possible in Statix. A more in-

depth overview of the evolution and application of scope

graphs is given by Zwaan and van Antwerpen [39].

Casamento [5] uses scope graphs to write correct-by-

construction type checkers in Agda that yield intrinsically

typed syntax for languages where scope graph construction

does not depend on querying a partially constructed graph.

6.2 Phasing in Other Type Checkers
Rouvoet et al. [33] observe that the module system of Rust

has features comparable to our LM case study. A key differ-

ence is that enclosing modules are not reachable by default,

but must be brought in scope using (e.g.) a use super::* state-

ment. Hence, modules that are in (lexical) scope cannot be

shadowed by modules that are imported later. Thus, newly

resolved imports can only make other module references am-
biguous. As such, Rust’s module resolution does not require

backtracking, but is implemented with a fix-point computa-

tion instead. In addition, it has a ‘finalize’ phase that checks

whether the import resolution is stable.
7
The anyOrder op-

eration from §5.2 performs similar checks.

The Scala 3 compiler also generalizes the notion of sym-

bol tables, but in a different way than scope graphs do [21].

7https://github.com/rust-lang/rust/blob/55e8df2b0e3c4494b77f2431b912c
51e6fe733ba/compiler/rustc_resolve/src/imports.rs#L466
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Internally, different phases have different contexts. Each con-

text carries meanings (denotations) for symbols. In this way,

information (such as types) can be changed between phases,

which is used to keep typing information accurate under

transformations. However, within the single type checking

phase, names are resolved in a way that looks like traditional

lookups in symbol tables. Thus, there appears to be no ex-

plicit stability checking, neither within the type checking

phase nor in the updates to a context that a transforma-

tion can introduce. In future research, we could investigate

whether our monadic scope graph framework could be ex-

tended to track stability under (controlled) transformations.

Another common framework to write type checkers in

is attribute grammars [19]. In this system, attributes can be

associated with productions in a grammar. Attributes are

evaluated using small ‘functions’ that can refer to attributes

of other nodes. Ironically, this paradigm has made the oppo-

site development regarding stratification as the scope graph

framework has. While canonical attribute grammar execu-

tion followed a statically determined ordering of multiple

traversals, later extensions (aiming to improve expressive-

ness) introduced dynamic scheduling to the paradigm. Some

of these extensions include reference attributes [8, 12], which
allow attributes to evaluate to references to other AST nodes;

parameterized attributes [8] which allow passing parameters

to attributes; and collection attributes [23] allow attributes

to be a “combination of contributions from distant nodes in

the abstract syntax tree”. Evaluation of each of these kinds

of attributes is usually done dynamically; i.e., on-demand.

This gives more flexibility than our approach, at the cost of

declarative appeal and (sometimes) termination guarantees.

Rouvoet et al. [34, §E.1] claim that Statix’ scheduling is more

precise than JastAdd’s collection attributes. This would im-

ply that our framework could be able to express phasing that

cannot be derived from attribute grammars using collection

attributes, although examples are still to be found.

Finally, an earlier version of our library has been used to

explore how to type check a Java subset [36], a Scala sub-

set [25], type classes [27], and substructural types [18]. Our

LM case study is based Hübner’s work [13], with two main

differences. First, we use applicative functors for phasing;

second, we use back-tracking to implement import sensitive

module resolution whereas Hübner uses a dedicated import

resolution algorithm.We conjecture that our implementation

is sound and complete w.r.t. the typing rules of LM whereas

Hübner’s algorithm is known to be incomplete.

6.3 (Higher-Order) Algebraic Effects and Handlers
In the code artifact accompanying the paper [32], we used

a Haskell embedding of effects and handlers [30] to provide

an implementation of the monad which the code examples

in this paper leaves abstract. This allowed us to separately

define and subsequently compose effects. For example, our

implementation of LM composes separately defined han-

dlers for unification operations (the Unif interface from §5.1)

and scope graph construction operations (the SG interface

from §3.1). To define higher-order effects (i.e., effects where
operations can have computations as arguments, such as the

anyOrder operation) in §5.2, we used hefty algebras [31] to
elaborate higher-order effects into algebraic effects.

7 Conclusion
Implementing type systems for languages with complex

(non-lexical) name binding features is challenging. A key

challenge is that all relevant name binding information must

be aggregated before a name is resolved. We showed how to

address this challenge using scope graph constructing opera-

tions which dynamically detect and reject programs that fail

to aggregate relevant name binding information before name

resolution. Scheduling queries correctly typically requires

multi-phased type checking. However, it is often possible

to define typing rules that abstract from such operational

phasing concerns. To make type checker implementations

more compact, we used recently developed techniques from

previous work on applicative functors to compositionally

map program ASTs onto computations representing phased

typing constraints. This yields an expressive framework for

sound name resolution of complex binding structures, and

reduces the gap between type checker implementations and

typing rules since type checker cases consist of computa-

tions that roughly correspond to typing rule premises, except

these are composed using monadic combinators.

Future Work. While our case studies show that our ap-

proach supports type systems that cannot be operationalized

using Statix, it is an open questionwhether the reverse is true.

We enforce a static number of phases, while (e.g.) constraint-

based approaches support more dynamic scheduling. To the

best of our knowledge, a precise characterization of static vs.

dynamic phasing, and a comparison of their expressiveness,

is yet to be made. For example, it is not yet clear whether a

type system with simple record inference (e.g. as presented

by Van Antwerpen et al. [38, §2.3]) can be ported to our

framework. In addition, scheduling schemes designed using

this framework might inform refinements of algorithms used

in automatically scheduling systems, such as Statix. While

our approach is expressive, our type checker implementa-

tions are currently not very efficient. In future work, we

would like to explore a more efficient implementation of

scope graph construction and querying, and explore fusing
phases similarly to Gibbons et al. [9].
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