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He�y Algebras
Modular Elaboration of Higher-Order Algebraic E�ects
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Algebraic e�ects and handlers is an increasingly popular approach to programming with e�ects. An attraction
of the approach is its modularity: e�ectful programs are written against an interface of declared operations,
which allows the implementation of these operations to be de�ned and re�ned without changing or recom-
piling programs written against the interface. However, higher-order operations (i.e., operations that take
computations as arguments) break this modularity. While it is possible to encode higher-order operations
by elaborating them into more primitive algebraic e�ects and handlers, such elaborations are typically not
modular. In particular, operations de�ned by elaboration are typically not a part of any e�ect interface, so we
cannot de�ne and re�ne their implementation without changing or recompiling programs. To resolve this
problem, a recent line of research focuses on developing new and improved e�ect handlers. In this paper we
present a (surprisingly) simple alternative solution to the modularity problem with higher-order operations:
we modularize the previously non-modular elaborations commonly used to encode higher-order operations.
Our solution is as expressive as the state of the art in e�ects and handlers.

CCS Concepts: • Software and its engineering→ Semantics; • Theory of computation→ Type struc-
tures; Program speci�cations; Denotational semantics.

Additional Key Words and Phrases: Algebraic E�ects, Modularity, Reuse, Agda, Dependent Types

ACM Reference Format:
Casper Bach Poulsen and Cas van der Rest. 2023. Hefty Algebras: Modular Elaboration of Higher-Order
Algebraic E�ects. Proc. ACM Program. Lang. 7, POPL, Article 62 (January 2023), 31 pages. https://doi.org/10.
1145/3571255

1 INTRODUCTION
De�ning abstractions for programming with side e�ects is a research question with a long and rich
history. The goal is to de�ne an interface of (possibly) side e�ecting operations where the interface
encapsulates and hides irrelevant operational details about the operations and their side e�ects.
Such encapsulation makes it easy to refactor, optimize, or even change the behavior of a program,
by changing the implementation of the interface.

Monads [Moggi 1989b] have long been the preferred solution to this research question. However,
algebraic e�ects and handlers [Plotkin and Pretnar 2009] are emerging as an attractive alternative
solution, due to the modularity bene�ts that they provide. However, these modularity bene�ts do
not apply to many common operations that take computations as arguments.
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1.1 Background: Algebraic E�ects and Handlers
To understand the bene�ts of algebraic e�ects and handlers and the modularity problem with
operations that take computations as parameters, we give a brief introduction to algebraic e�ects,
based on the e�ect handlers tutorial by Pretnar [2015]. Readers familiar with algebraic e�ects and
handlers are encouraged to skim the code examples in this subsection and read its �nal paragraph.
Consider a simple operation out for output which takes a string as argument and returns the

unit value. Using algebraic e�ects and handlers its type is:
out : String → () !Output

Here Output is the e�ect of the operation. In general A !Δ is a computation type where A is the
return type and Δ is a row (i.e., unordered sequence) of e�ects, where an e�ect is a label associated
with a set of operations. A computation of type A !Δ may only use operations associated with an
e�ect in Δ. An e�ect can generally be associated with multiple operations (but not the other way
around); however, the simple Output e�ect that we consider is only associated with the operation
out. Thus () !Output is the type of a computation which may call the out operation.

We can think of Output as an interface that speci�es the parameter and return type of out. The
implementation of such an interface is given by an e�ect handler. An e�ect handler de�nes how
to interpret operations in the execution context they occur in. The type of an e�ect handler is
� !Δ ⇒ � !Δ′, where Δ is the row of e�ects before applying the handler and Δ′ is the row after.
For example, here is the type of an e�ect handler for Output:

hOut : � !Output,Δ⇒ (� × String) !Δ
The Output e�ect is being handled, so it is only present in the e�ect row on the left.1 As the type
suggests, this handler handles out operations by accumulating a string of output. Below is the
handler of this type:

hOut = handler { (return G) ↦→ return (G, “”)
(out B;:) ↦→ do (~, B ′) ← : (); return (~, B ++ B ′) }

The return case of the handler says that, if the computation being handled terminates normally
with a value G , then we return a pair of G and the empty string. The case for out binds a variable B
for the string argument of the operation, but also a variable : representing the execution context (or
continuation). Invoking an operation suspends the program and its execution context up-to the
nearest handler of the operation. The handler can choose to re-invoke the suspended execution
context (possibly multiple times). The handler case for out above always invokes : once. Since :
represents an execution context that includes the current handler, calling : gives a pair of a value
~ and a string B ′, representing the �nal value and output of the execution context. The result of
handling out B is then ~ and the current output (B) plus the output of the rest of the program (B ′).
In general, a computation < : � !Δ can only be run in a context that provides handlers for

each e�ect in Δ. To this end, if Δ = Δ1,Δ2 and ℎ : � !Δ1 ⇒ � !Δ′1, then the expression
(with ℎ handle<) : � !Δ′1,Δ2 runs< in the context of the handler ℎ. For example, consider:

hello : () !Output
hello = out “Hello”; out “ world!”

Using this, we can run hello in a scope with the handler hOut to compute the following result:
(with hOut handle hello) ≡ ((), “Hello world!”)

1Output could occur in Δ too. This raises the question: which Output e�ect does a given handler actually handle? We refer
to the literature for answers to this question; see, e.g., the row treatment of Morris and McKinna [2019], the e�ect lifting of
Biernacki et al. [2018], and the e�ect tunneling of Zhang and Myers [2019].
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An attractive feature of algebraic e�ects and handlers is that programs such as hello are de�ned
independently of how the e�ectful operations they use are implemented. This makes it is possible to
re�ne, refactor, or even change the meaning of operations without having to modify the programs
that use them. For example, we can re�ne the meaning of out without modifying the hello program,
by using a di�erent handler hOut ′ which prints output to the console. However, some operations
are challenging to express in a way that provides these modularity bene�ts.

1.2 The Modularity Problem with Higher-Order Operations
Algebraic e�ects and handlers provide limited support for operations that accept computations
as arguments (sometimes called higher-order operations). The limitation is subtle but follows from
how handler cases are typed. Following Plotkin and Pretnar [2009]; Pretnar [2015], the left and
right hand sides of handler cases are typed as follows:

handler { · · · (op E︸︷︷︸
�

; :︸︷︷︸
� → � !Δ′

) ↦→ 2︸︷︷︸
� !Δ′

, · · · }

Here it is only : whose type is compatible with the right hand side. In theory, the parameter type
E would also be compatible if � = � !Δ′. However, encoding computations as parameters in this
way is non-modular. The reason is that e�ect handlers are not applied recursively to parameters of
operations [Plotkin and Pretnar 2009; Pretnar 2015]; i.e., if ℎ handles operations other than op, then

with ℎ handle (do G ← op E ;<) ≡ do G ← op E ; (with ℎ handle<)
This implies that the only way to ensure that E has type � = � !Δ′ whose e�ects match the context
of the operation (e.g., : : � → � !Δ′), is to apply handlers of higher-order e�ect encodings (such as
op) before applying other handlers (such as ℎ). In turn, this means that programs can contain at
most one higher-order e�ect encoded in this way (otherwise, which handler do we apply �rst?).
Consequently, encoding computation parameters in terms of the value E carried by an operation
does not support modular de�nition, composition, and handling of higher-order e�ects.
A consequence of this handler typing restriction is that algebraic e�ects and handlers only

support higher-order operations whose computation parameters are continuation-like. In particular,
for any operation op : � !Δ→ · · · → � !Δ→ � !Δ and any<1, . . . ,<= and : ,

do G ← (op<1 . . .<=);: G ≡ op (do G1 ←<1;: G1) . . . (do G= ←<= ;: G=) (†)
This property, known as the algebraicity property [Plotkin and Power 2003], says that the com-
putation parameter values<1, . . . ,<= are only ever run in a way that directly passes control to : .
Such operations can without loss of generality or modularity be encoded as operations without
computation parameters; e.g., op<1 . . .<= = do G ← op′ (); select G where op′ : () → �= !Δ and
select : �= → � !Δ is a function that chooses between = di�erent computations using a data
type �= whose constructors are 31, . . . , 3= such that select 38 =<8 for 8 = 1..=. Some higher-order
operations obey the algebraicity property; many do not. Examples of operations that do not include:
• Exception handling: let catch<1 <2 be an operation that handles exceptions thrown during
evaluation of computation<1 by running<2 instead, and throw be an operation that throws
an exception. These operations are not algebraic. For example,

do (catch<1 <2); throw . catch (do<1; throw) (do<2; throw)
• Local binding (the reader monad [Jones 1995]): let ask be an operation that reads a local binding,
and local A < be an operation that makes A the current binding in computation<. Observe:

do (local A <); ask . local A (do<; ask)
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• Logging with �ltering (an extension of the writer monad [Jones 1995]): let out B be an opera-
tion for logging a string, and censor 5 < be an operation for post-processing the output of
computation< by applying 5 : String → String.2 Observe:

do (censor 5 <); out B . censor 5 (do<; out B)
It is, however, possible to elaborate higher-order operations into more primitive e�ects and

handlers. For example, censor can be elaborated into an inline handler application of hOut:
censor : (String → String) → � !Output,Δ→ � !Output,Δ
censor 5 < = do (G, B) ← (with hOut handle<); out (5 B); return G

The other higher-order operations above can be de�ned in a similar manner.
Elaborating higher-order operations into standard algebraic e�ects and handlers as illustrated

above is a key use case that e�ect handlers were designed for [Plotkin and Pretnar 2009]. However,
elaborating operations in this way means the operations are not a part of any e�ect interface. So,
unlike plain algebraic operations, the only way to refactor, optimize, or change the semantics of
higher-order operations de�ned in this way is to modify or copy code. In other words, we forfeit
one of the key attractive modularity features of algebraic e�ects and handlers.
This modularity problem with higher-order e�ects (i.e., e�ects with higher-order operations)

was �rst observed by Wu et al. [2014] who proposed scoped e�ects and handlers [Piróg et al. 2018;
Wu et al. 2014; Yang et al. 2022] as a solution. Scoped e�ects and handlers have similar modularity
bene�ts as algebraic e�ects and handlers, but works for a wider class of e�ects, including many
higher-order e�ects. However, van den Berg et al. [2021] recently observed that operations that
defer computation, such as evaluation strategies for _ application or (multi-)staging [Taha and
Sheard 2000], are beyond the expressiveness of scoped e�ects. Therefore, van den Berg et al. [2021]
introduced another �avor of e�ects and handlers that they call latent e�ects and handlers.
In this paper we present a (surprisingly) simple alternative solution to the modularity problem

with higher-order e�ects, which only uses standard e�ects and handlers and o�-the-shelf generic
programming techniques known from, e.g., data types à la carte [Swierstra 2008].

1.3 Solving the Modularity Problem: Elaboration Algebras
We propose to de�ne elaborations such as censor from § 1.2 in a modular way. To this end, we
introduce a new type of computations with higher-order e�ects which can be modularly elaborated
into computations with only standard algebraic e�ects:

� !!�
elaborate−−−−−−→ � !Δ

handle−−−−−→ Result

Here� !!� is a computation type where� is a return type and� is a row comprising both algebraic
and higher-order e�ects. The idea is that the higher-order e�ects in the row � are modularly
elaborated into the row Δ. To achieve this, we de�ne elaborate such that it can be modularly
composed from separately de�ned elaboration cases, which we call elaboration algebras (for
reasons we explain in § 3). Using � !!� V � !Δ as the type of elaboration algebras that elaborate
the higher-order e�ects in � to Δ, we can modularly compose any pair of elaboration algebras
41 : � !!H1 V � !Δ and 42 : � !!H2 V � !Δ into an algebra 412 : � !!H1,H2 V � !Δ.3

Elaboration algebras are as simple to de�ne as non-modular elaborations such as censor (§ 1.2).
For example, here is the elaboration algebra for the higher-order Censor e�ect whose only associated
2The censor operation is a variant of the function by the same name the widely used Haskell mtl library: https://hackage.
haskell.org/package/mtl-2.2.2/docs/Control-Monad-Writer-Lazy.html
3Readers familiar with data types à la carte [Swierstra 2008] may recognize this as algebra composition.
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operation is the higher-order operation censorop : (String → String) → � !!� → � !!� :

eCensor : � !!Censor V � !Output,Δ
eCensor (censorop 5 <; :) = do (G, B) ← (with hOut handle<); out (5 B); : G

The implementation of eCensor is essentially the same as censor . There are two main di�erences.
First, elaboration happens in-context, so the value yielded by the elaboration is passed to the context
(or continuation) : . Second, and most importantly, programs that use the censorop operation are
now programmed against the interface given by Censor , meaning programs do not (and cannot)
make assumptions about how censorop is elaborated. As a consequence, we can modularly re�ne the
elaboration of higher-order operations such as censorop, without modifying the programs that use
the operations. For example, the following program censors and replaces “Hello” with “Goodbye”:4

censorHello : () !!Censor,Output
censorHello = censorop (_B. if (B ≡ “Hello”) then “Goodbye” else B) hello

Say we have a handler hOut ′ : (String → String) → � !Output,Δ ⇒ (� × String) !Δ which
handles each operation out B by pre-applying a censor function (String → String) to B before
emitting it. Using this handler, we can give an alternative elaboration of censorop which post-
processes output strings individually:

eCensor ′ : � !!Censor V � !Output,Δ
eCensor ′ (censorop 5 <; :) = do G ← (with hOut ′ 5 handle<); out B; : G

In contrast, eCensor applies the censoring function (String → String) to the batch output of the
computation argument of a censorop operation. The batch output of hello is “Hello world!” which is
unequal to “Hello”, so eCensor leaves the string unchanged. On the other hand, eCensor ′ censors
the individually output “Hello”:

with hOut handle (with 4�4=B>A elaborate censorHello) ≡ ((), “Hello world!”)
with hOut handle (with 4�4=B>A ′ elaborate censorHello) ≡ ((), “Goodbye world!”)

Higher-order operations now have the same modularity bene�ts as algebraic operations.

1.4 Contributions
This paper formalizes the ideas sketched in this introduction by shallowly embedding them in
Agda. However, the ideas transcend Agda. Similar shallow embeddings can be implemented in
other dependently typed languages, such as Idris [Brady 2013a]; but also in less dependently typed
languages like Haskell, OCaml, or Scala.5 By working a dependently typed language we can state
algebraic laws about interfaces of e�ectful operations, and prove that implementations of the
interfaces respect the laws. We make the following technical contributions:
• § 2 describes how to encode algebraic e�ects in Agda, revisits the modularity problem with
higher-order operations, and summarizes how scoped e�ects and handlers address the modu-
larity problem, for some (scoped operations) but not all higher-order operations.
• § 3 presents our solution to the modularity problem with higher-order operations. Our solution
is to (1) type programs as higher-order e�ect trees (which we dub hefty trees), and (2) build
modular elaboration algebras for folding hefty trees into algebraic e�ect trees and handlers. The
computations of type � !!� discussed in § 1.3 correspond to hefty trees, and the elaborations
of type � !!� V � !Δ correspond to hefty algebras.

4This program relies on the fact that it is generally possible to lift computation � !Δ to � !!� when Δ ⊆ � .
5The artifact accompanying this paper [Bach Poulsen and Reinders 2023] contains a shallow embedding of elaboration
algebras in Haskell.
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• § 4 shows that hefty algebras support formal reasoning on a par with algebraic e�ects and
handlers, by verifying algebraic laws of higher-order e�ects for exception catching.
• § 5 presents examples of how to de�ne hefty algebras for common higher-order e�ects from
the literature on e�ect handlers.

§ 6 discusses related work and § 7 concludes. An artifact containing the code of the paper and a
Haskell embedding of the same ideas is available online [Bach Poulsen and Reinders 2023].

2 ALGEBRAIC EFFECTS AND HANDLERS IN AGDA
This section describes how to encode algebraic e�ects and handlers in Agda. We do not assume
familiarity with Agda and explain Agda speci�c notation in footnotes. §§ 2.1 to 2.4 de�nes algebraic
e�ects and handlers; § 2.5 revisits the problem of de�ning higher-order e�ects using algebraic
e�ects and handlers; and § 2.6 discusses how scoped e�ects [Piróg et al. 2018; Wu et al. 2014; Yang
et al. 2022] solves the problem for some (scoped operations) but not all higher-order operations.

2.1 Algebraic E�ects and The Free Monad
We encode algebraic e�ects in Agda by representing computations as an abstract syntax tree
given by the free monad over an e�ect signature. Such e�ect signatures are traditionally [Awodey
2010; Kammar et al. 2013; Kiselyov and Ishii 2015; Swierstra 2008; Wu et al. 2014] given by a
functor; i.e., a type of kind Set→ Set together with a (lawful) mapping function.6 In our Agda
implementation, e�ect signature functors are de�ned by giving a container [Abbott et al. 2003, 2005].
Each container corresponds to a value of type Set→ Set that is both strictly positive7 and universe
consistent8 [Martin-Löf 1984], meaning they are a constructive approximation of endofunctors on
Set. Using containers, e�ect signatures are given by a (dependent) record type:9 10

record E�ect : Set1 where
field Op : Set

Ret : Op→ Set

Here, Op is a type of operations, and Ret de�nes the return type of each operation of type Op.
As discussed in the introduction, computations may use multiple di�erent e�ects. We use the

co-product of e�ect signature functors to encode rows of e�ects:11 12

_⊕_ : E�ect→ E�ect→ E�ect
Op (Δ1 ⊕ Δ2) = Op Δ1 ] Op Δ2
Ret (Δ1 ⊕ Δ2) = [ Ret Δ1 , Ret Δ2 ]

We compute the co-product of two e�ect signatures by taking the disjoint sum of their operations
and combining the return type mappings pointwise. The e�ect Δ1 ⊕ Δ2 corresponds to the row
union denoted as Δ1,Δ2 in the introduction.
6Set is the type of types in Agda. More generally, functors mediate between di�erent categories. For simplicity, this paper
only considers endofunctors on Set.
7https://agda.readthedocs.io/en/v2.6.2.2/language/positivity-checking.html
8https://agda.readthedocs.io/en/v2.6.2.2/language/universe-levels.html
9https://agda.readthedocs.io/en/v2.6.2.2/language/record-types.html
10The type of e�ect rows has type Set1 instead of Set. To prevent logical inconsistencies, Agda has a hierarchy of types
where Set : Set1, Set1 : Set2, etc.
11The _⊕_ function uses copattern matching: https://agda.readthedocs.io/en/v2.6.2.2/language/copatterns.html. The Op line
de�nes how to compute the Op �eld of the record produced by the function; and similarly for the Ret line.
12_]_ is a disjoint sum type from the Agda standard library. It has two constructors, inj1 : A→ A ] B and inj2 : B→ A ] B.
The [_,_] function (also from the Agda standard library) is the eliminator for the disjoint sum type. Its type is
[_,_] : (A→ X )→ (B→ X )→ (A ] B)→ X .
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The syntax of computations with e�ects Δ is given by the free monad over Δ. Following Hancock
and Setzer [2000] and Kiselyov and Ishii [2015], we encode the free monad as follows:
data Free (Δ : E�ect) (A : Set) : Set where
pure : A → Free Δ A
impure : (op : Op Δ) (k : Ret Δ op→ Free Δ A)→ Free Δ A

Here, pure is a computation with no side-e�ects, whereas impure is an operation (op : Op Δ) whose
continuation (k : Ret Δ op→ Free Δ A) expects a value of the return type of the operation. To see
how we can represent programs using this data type, it is instructional to look at an example.

Example 2.1. The data type on the left below de�nes an operation for outputting a string. On the
right is its corresponding e�ect signature.

data OutOp : Set where
out : String→ OutOp

Output : E�ect
Op Output = OutOp
Ret Output (out s) = >

The e�ect signature on the right says that out returns a unit value (> is the unit type). Using this,
we can write a simple hello world corresponding to the hello program from § 1:
hello : Free Output >
hello = impure (out "Hello") (_ _→ impure (out " world!") (_ x → pure x))

§ 2.1 shows how to make this program more readable by using monadic do notation.

The hello program above makes use of just a single e�ect. Say we want to use another e�ect,
Throw, with a single operation, throw, which represents throwing an exception (therefore having
the empty type ⊥ as its return type):

data ThrowOp : Set where
throw : ThrowOp

Throw : E�ect
Op Throw = ThrowOp
Ret Throw throw = ⊥

Programs that use multiple e�ects, such as Output and Throw, are unnecessarily verbose. For
example, consider the following program which prints two strings before throwing an exception:13

hello-throw : Free (Output ⊕ Throw) A
hello-throw = impure (inj1 (out "Hello")) (_ _→

impure (inj1 (out " world!")) (_ _→
impure (inj2 throw) ⊥-elim))

To reduce syntactic overhead, we use row insertions and smart constructors [Swierstra 2008].

2.2 Row Insertions and Smart Constructors
A row insertion Δ ∼ Δ0 I Δ

′ is a data type representing a witness that Δ is the e�ect row resulting
from inserting Δ0 somewhere in Δ′:
data _∼_I_ : E�ect→ E�ect→ E�ect→ Set1 where
insert : (Δ0 ⊕ Δ′) ∼ Δ0 I Δ

′

si� : (Δ ∼ Δ0 I Δ
′)→ ((Δ1 ⊕ Δ) ∼ Δ0 I (Δ1 ⊕ Δ′))

The insert constructor represents a witness that Δ0 is inserted in front of Δ′, whereas si� witnesses
that Δ0 is inserted into the row Δ1 ⊕ Δ′ by inserting Δ0 somewhere in Δ′.
13⊥-elim is the eliminator for the empty type, encoding the principle of explosion: ⊥-elim : ⊥→ A.
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Using row insertions we can coerce e�ects into larger ones, and de�ne smart constructors like:
8out : {| Δ ∼ Output I Δ′ |} → String→ Free Δ >

We refer to Bach Poulsen and Reinders [2023] for the full implementation of 8out. The double brace
wrapped row insertion parameter of 8out tells us that the Output e�ect is a part of the row Δ. The
smart constructor uses this witness to coerce an out operation into Δ. This allows 8out to be used
in any program that has at least the Output e�ect.
The double braces in {| Δ ∼ Output I Δ′ |} declares the row insertion witness as an instance

argument of 8out. Instance arguments in Agda are conceptually similar to type class constraints in
Haskell: when we call 8out, Agda will attempt to automatically �nd a witness of the right type, and
implicitly pass this as an argument.14 By declaring the row insertion constructors insert and si� as
instances, Agda is able to construct insertion witnesses for us automatically in most cases.15

2.3 Fold and Monadic Bind for Free
Since Free Δ is a monad, we can sequence computations using monadic bind, which is naturally
de�ned in terms of the fold over Free.
fold : (A→ B)→ Alg Δ B→ Free Δ A→ B
fold g a (pure x) = g x
fold g a (impure op k) = a op (fold g a ◦ k)

Alg : (Δ : E�ect) (A : Set)→ Set
Alg Δ A = (op : Op Δ) (k : Ret Δ op→ A)→ A

Besides the input computation to be folded (last parameter), the fold is parameterized by a function
A→ B (�rst parameter) which folds a pure computation, and an algebra Alg Δ A (second parameter)
which folds an impure computation. We call the latter an algebra because it corresponds to an
� -algebra [Arbib and Manes 1975; Pierce 1991] over the signature functor of Δ, denoted �Δ. That is,
a tuple (�, U) where � is an object called the carrier of the algebra, and U a morphism �Δ (�) → �.
Using fold, monadic bind for the free monad is de�ned as follows:
_�=_ : Free Δ A→ (A→ Free Δ B)→ Free Δ B
m�= g = fold g impure m

Intuitively, m�= g concatenates g to all the leaves in the computation m.

Example 2.2. By implementing a smart constructor 8throw : {| Δ ∼ Throw I Δ′ |} → Free Δ A for
throw, our example program from before becomes more readable:
hello-throw1 : {| Δ ∼ Output I Δ1 |} → {| Δ ∼ Throw I Δ2 |} → Free Δ A
hello-throw1 = do 8out "Hello"; 8out " world!"; 8throw

This illustrates how we use the free monad to write e�ectful programs against an interface given
by an e�ect signature. Next, we de�ne e�ect handlers.

2.4 E�ect Handlers
An e�ect handler implements the interface given by an e�ect signature, and de�nes how to interpret
the syntactic operations associated with an e�ect. Like monadic bind, e�ect handlers can be de�ned
as a fold over the free monad. The following type of parameterized handlers de�nes how to fold
respectively pure and impure computations:
14For more details on how instance argument resolution works, see the Agda documentation: https://agda.readthedocs.io/
en/v2.6.2.2/language/instance-arguments.html
15The two constructors for row insertion are overlapping, which will cause Agda instance resolution to fail unless we enable
the option --overlapping-instances. The examples in this paper type check in Agda 2.6.2.2 using this option.
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record 〈_!_⇒_⇒_!_〉 (A : Set) (Δ : E�ect) (P : Set) (B : Set) (Δ′ : E�ect) : Set1 where
field ret : A→ P → Free Δ′ B

hdl : Alg Δ (P → Free Δ′ B)

A handler of type 〈 A ! Δ⇒ P ⇒ B ! Δ′ 〉 is parameterized in the sense that it turns a computation
of type Free Δ A into a parameterized computation of type P → Free Δ′ B. The following function
does so by folding using ret, hdl, and a function to-front : {| w : Δ ∼ Δ0 I Δ

′ |} → Free Δ A→ Free
(Δ0 ⊕ Δ′) A , whose implementation can be found in the artifact [Bach Poulsen and Reinders 2023].
given_handle_ : {| Δ ∼ Δ0 I Δ

′ |} → 〈 A ! Δ0⇒ P ⇒ B ! Δ′ 〉 → Free Δ A→ (P → Free Δ′ B)
given h handle m = fold
(ret h)
[ hdl h , (_ op k p→ impure op (_ x → k x p)) ]
(to-front m)

Comparing with the syntax we used to explain algebraic e�ects and handlers in the introduction,
the ret �eld corresponds to the return case of the handlers from the introduction, and hdl cor-
responds to the cases that de�ne how operations are handled. The parameterized handler type
〈 A ! Δ⇒ P ⇒ B ! Δ′ 〉 corresponds to the type � !Δ,Δ′ ⇒ % → � !Δ′, and given h handle m
corresponds to with ℎ handle<.

Using this type of handler, the hOut handler from the introduction can be de�ned as follows:
hOut : 〈 A ! Output⇒>⇒ (A × String) ! Δ 〉
ret hOut x _ = pure (x , "")
hdl hOut (out s) k p = do (x , s′)← k � p; pure (x , s ++ s′)

The handler hOut in § 1.1 did not bind any parameters. However, since we are encoding it as a
parameterized handler, hOut now binds a unit typed parameter. Besides this di�erence, the handler
is the same as in § 1.1. We can use the hOut handler to run computations. To this end, we introduce
a Nil e�ect with no associated operations which we will use to indicate where an e�ect row ends:
Nil : E�ect
Op Nil = ⊥
Ret Nil = ⊥-elim

un : Free Nil A→ A
un (pure x) = x

Using these, we can run a simple hello world program:16

hello′ : Free (Output ⊕ Nil) >
hello′ = do
8out "Hello"; 8out " world!"

test-hello : un ((given hOut handle hello′) �)
≡ (� , "Hello world!")

test-hello = refl

An example of an e�ect handler that makes use of parameterized (as opposed to unparameterized)
handlers, is the state e�ect. Figure 1 declares and illustrates how to handle such an e�ect with
operations for reading (get) and changing (put) the state of a memory cell holding a natural number.

2.5 The Modularity Problem with Higher-Order E�ects, Revisited
§ 1.2 described themodularity problemwith higher-order e�ects, using a higher-order operation that
interacts with output as an example. In this section we revisit the problem, framing it in terms of the
de�nitions introduced in the previous section, using a di�erent e�ect whose interface is summarized
16The refl constructor is from the Agda standard library, and witnesses that a propositional equality (≡) holds.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 62. Publication date: January 2023.



62:10 Casper Bach Poulsen and Cas van der Rest

data StateOp : Set where
get : StateOp
put : N→ StateOp

State : E�ect
Op State = StateOp
Ret State get = N
Ret State (put n) = >

hSt : 〈 A ! State⇒ N⇒ (A × N) ! Δ′ 〉
ret hSt x s = pure (x , s)
hdl hSt (put m) k n = k � m
hdl hSt get k n = k n n

8incr : {| Δ ∼ State I Δ′ |} → Free Δ >
8incr = do n← 8get; 8put (n + 1)

incr-test : un ((given hSt handle 8incr) 0) ≡ (� , 1)
incr-test = refl

Fig. 1. A state e�ect (upper), its handler (lower le�), and a simple test (lower right) which uses the (elided)
smart constructors for get and put

by the CatchM record below. The record asserts that the computation type M : Set→ Set has at
least a higher-order operation catch and a �rst-order operation throw:
record CatchM (M : Set→ Set) : Set1 where
field catch : M A→ M A→ M A

throw : M A

The idea is that throw throws an exception, and catch m1 m2 handles any exception thrown during
evaluation of m1 by running m2 instead. The problem is that we cannot give a modular de�nition
of operations such as catch using algebraic e�ects and handlers alone. As discussed in § 1.2, the
crux of the problem is that algebraic e�ects and handlers provide limited support for higher-order
operations. However, as also discussed in § 1.2, we can encode catch in terms of more primitive
e�ects and handlers, such as the following handler for the Throw e�ect:
hThrow : 〈 A ! Throw⇒>⇒ (Maybe A) ! Δ′ 〉
ret hThrow x _ = pure (just x)
hdl hThrow throw k _ = pure nothing

The handler modi�es the return type of the computation by decorating it with a Maybe. If no
exception is thrown, ret wraps the yielded value in a just. If an exception is thrown, the handler
never invokes the continuation k and aborts the computation by returning nothing instead. We
can elaborate catch into an inline application of hThrow. To do so we make use of e�ect masking
which lets us “weaken” the type of a computation by inserting extra e�ects in an e�ect row:
♯_ : {| Δ ∼ Δ0 I Δ

′ |} → Free Δ′ A→ Free Δ A

Using this, the following elaboration de�nes a semantics for the catch operation:17

catch : {| w : Δ ∼ Throw I Δ′ |} → Free Δ A→ Free Δ A→ Free Δ A
catch m1 m2 = (♯ ((given hThrow handle m1) �))�= (maybe pure m2)

If m1 does not throw an exception, we return the produced value. If it does, m2 is run.
As observed by Wu et al. [2014], programs that use elaborations such as catch are less modular

than programs that only use plain algebraic operations. In particular, the e�ect row type of com-
putations no longer represents the interface of operations that we use to write programs, since
17The maybe function is the eliminator for the Maybe type. Its �rst parameter is for eliminating a just; the second nothing.
Its type is maybe : (A→ B)→ B→Maybe A→ B.
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the catch elaboration is not represented in the e�ect type at all. So we have to rely on di�erent
machinery if we want to refactor, optimize, or change the semantics of catch without having to
change programs that use it. In the next subsection we describe how to de�ne e�ectful operations
such as catch modularly using scoped e�ects and handlers, and discuss how this is not possible for,
e.g., operations representing _ abstraction.

2.6 Scoped E�ects and Handlers
This subsection gives an overview of scoped e�ects and handlers. While the rest of the paper can
be read and understood without a deep understanding of scoped e�ects and handlers, we include
this overview to facilitate comparison with the alternative solution that we introduce in § 3.
Scoped e�ects extend the expressiveness of algebraic e�ects to support a class of higher-order

operations that Piróg et al. [2018]; Wu et al. [2014]; Yang et al. [2022] call scoped operations. We
illustrate how scoped e�ects work, using a freer monad encoding of the endofunctor algebra
approach of Yang et al. [2022]. The work of Yang et al. [2022] does not include examples of modular
handlers, but the original paper on scoped e�ects and handlers byWu et al. [2014] does. We describe
an adaptation of the modular handling techniques due toWu et al. [2014] to the endofunctor algebra
approach of Yang et al. [2022].

2.6.1 Scoped Programs. Scoped e�ects extend the free monad data type with an additional row
for scoped operations. The return and call constructors of Prog below correspond to the pure and
impure constructors of the free monad, whereas enter is new:
data Prog (Δ W : E�ect) (A : Set) : Set1 where
return : A → Prog Δ W A
call : (op : Op Δ) (k : Ret Δ op→ Prog Δ W A)→ Prog Δ W A
enter : (op : Op W ) (sc : Ret W op→ Prog Δ W B) (k : B → Prog Δ W A)→ Prog Δ W A

The enter constructor represents a higher-order operation which has as many sub-scopes (i.e.,
computation parameters) as there are inhabitants of the return type of the operation (op : Op W ).
Each sub-scope of enter is a scope in the sense that control �ows from the scope to the continuation,
since the return type of each scope (B) matches the parameter type of the continuation k of enter.

Using Prog, the catch operation can be de�ned as a scoped operation:

data CatchOp : Set where
catch : CatchOp

Catch : E�ect
Op Catch = CatchOp
Ret Catch catch = Bool

The e�ect signature indicates that Catch has two scopes since Bool has two inhabitants. Follow-
ing Yang et al. [2022], scoped operations are handled using a structure-preserving fold over Prog:

hcata : (∀ {X }→ X → G X )
→ CallAlg Δ G
→ EnterAlg W G
→ Prog Δ W A→ G A

CallAlg : (Δ : E�ect) (G : Set→ Set1)→ Set1
CallAlg Δ G =
{A : Set} (op : Op Δ) (k : Ret Δ op→ G A)→ G A

EnterAlg : (W : E�ect) (G : Set→ Set1)→ Set1
EnterAlg W G =
{A B : Set} (op : Op W ) (sc : Ret W op→ G B) (k : B→ G A)
→ G A

The �rst argument represents the case where we are folding a return node; the second and third
correspond to respectively call and enter.
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2.6.2 Scoped E�ect Handlers. The following de�nes a type of parameterized scoped e�ect handlers:
record 〈•!_!_⇒_⇒_•!_!_〉 (Δ W : E�ect) (P : Set) (G : Set→ Set) (Δ′ W ′ : E�ect) : Set1 where
field ret : X → P → Prog Δ′ W ′ (G X )

hcall : CallAlg Δ (_ X → P → Prog Δ′ W ′ (G X ))
henter : EnterAlg W (_ X → P → Prog Δ′ W ′ (G X ))
glue : (k : C→ P → Prog Δ′ W ′ (G X )) (r : G C)→ P → Prog Δ′ W ′ (G X )

A handler of type 〈• ! Δ ! W ⇒ P ⇒ G •! Δ′ ! W 〉 handles operations of Δ and W simultaneously and
turns a computation Prog Δ W A into a parameterized computation of type P → Prog Δ′ W ′ (G A).
The ret and hcall cases are similar to the ret and hdl cases from § 2.4. The crucial addition which
adds support for higher-order operations is the henter case which allows handler cases to �rst
invoke scoped sub-computations and inspect their return types, before (optionally) passing control
to the continuation k. The glue function is used for modularly weaving [Wu et al. 2014] side e�ects
of handlers through sub-scopes of yet-unhandled operations.

2.6.3 Weaving. To see why glue is needed, it is instructional to look at how the �elds in the record
type above are used to fold over Prog:
given_handle-scoped_ : {| w1 : Δ ∼ Δ0 I Δ

′ |} {| w2 : W ∼ W0 I W ′ |}
→ 〈•! Δ0 ! W0⇒ P ⇒ G •! Δ′ ! W ′ 〉
→ Prog Δ W A→ P → Prog Δ′ W ′ (G A)

given h handle-scoped m = hcata
(ret h)
[ hcall h , (_ op k p→ call op (_ x → k x p)) ]
[ henter h
, (_ op sc k p→ enter op (_ x → sc x p) (_ x → glue h k x p)) ]
(to-frontΔ (to-frontW m))

The second to last line above shows how glue is used. Because hcata eagerly folds the current
handler over scopes (sc), there is a mismatch between the type that the continuation expects (B)
and the type that the scoped computation returns (G B). The glue function �xes this mismatch for
the particular return type modi�cation G : Set→ Set of a parameterized scoped e�ect handler.

The scoped e�ect handler for exception catching is thus:18

hCatch : 〈•! Throw ! Catch⇒>⇒Maybe •! Δ′ ! W ′ 〉
ret hCatch x _ = return (just x)
hcall hCatch throw k _ = return nothing
henter hCatch catch sc k p = let m1 = sc true p; m2 = sc false p; k = flip k p in
m1 �= maybe k (m2 �= maybe k (return nothing))

glue hCatch k x p = maybe (flip k p) (return nothing) x

The henter �eld for the catch operation �rst runs m1. If no exception is thrown, the value produced
by m1 is forwarded to k. Otherwise, m2 is run and its value is forwarded to k, or its exception
is propagated. The glue �eld of hCatch says that, if an unhandled exception is thrown during
evaluation of a scope, the continuation is discarded and the exception is propagated; and if no
exception is thrown the continuation proceeds normally.
18Here, flip : (A→ B→ C)→ (B→ A→ C).
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2.6.4 Discussion and Limitations. As observed by van den Berg et al. [2021], some higher-order
e�ects do not correspond to scoped operations. In particular, the LambdaM record shown below
§ 2.5 is not a scoped operation:
record LambdaM (V : Set) (M : Set→ Set) : Set1 where
field lam : (V → M V )→ M V

app : V → M V → M V

The lam �eld represents an operation that constructs a _ value. The app �eld represents an operation
that will apply the function value in the �rst parameter position to the argument computation in
the second parameter position. The app operation has a computation as its second parameter so
that it remains compatible with di�erent evaluation strategies.

To see why the operations summarized by the LambdaM record above are not scoped operations,
let us revisit the de�nition of scoped operations, explicating an implicit quanti�cation in the enter
constructor of Prog:

enter : {B : Set} (op : Op W ) (sc : Ret W op→ Prog Δ W B ) (k : B → Prog Δ W A )→ Prog Δ W A

The highlighted � is existentially quanti�ed, meaning that the continuation expects as input a
value of some type B that only reveals itself once we match on enter. Consequently, the only way to
get a value of this type B is by running the scoped computation sc. At the same time, the only thing
we can do with the result of running sc, is applying it to the continuation, making it impossible to
postpone the evaluation of a scoped computation. But that is exactly what the implementation of
the lam operation of LambdaM requires. Consequently the lam operation is not a scoped operation.
It is possible to elaborate the LambdaM operations into more primitive e�ects and handlers, but as
discussed in §§ 1.2 and 2.5, such elaborations are not modular.
In the next section we present a simple alternative solution to scoped e�ects which supports a

broader class of higher-order e�ects.

3 HEFTY TREES AND ALGEBRAS
As observed in § 2.5, operations such as catch can be elaborated into more primitive e�ects and
handlers. However, these elaborations are not modular. We propose to solve this problem by
factoring these elaborations into interfaces of their own to make them modular.
To this end, we �rst introduce a new type of abstract syntax trees (§§ 3.1 to 3.3) representing

computations with higher-order operations, which we dub hefty trees (an acronymic pun on higher-
order ef fects). We then de�ne elaborations as algebras (hefty algebras; § 3.4) over these trees. The
following pipeline summarizes the idea, where H is a higher-order e�ect signature:

He�y H A
elaborate−−−−−−→ Free Δ A

handle−−−−−→ Result

For the categorically inclined reader, He�y conceptually corresponds to the initial algebra of
the functor He�yF � � ' = � + � ' (' �) where � : (Set → Set) → (Set → Set) de�nes the
signature of higher-order operations and is a higher-order functor, meaning we have both the
usual functorial map : (- → . ) → � � - → � � . for any functor � as well as a function
hmap : Nat(�,�) → Nat(� �,� �) which lifts natural transformations between any � and �

to a natural transformation between � � and � � . A hefty algebra is then an � -algebra over
a higher-order signature functor � . The notion of elaboration that we introduce in § 3.4 is an
� -algebra whose carrier is a “�rst-order” e�ect tree (Free Δ).

In this section, we encode this conceptual framework in Agda using containers [Abbott et al. 2003,
2005], which correspond to a higher-order signature functor � by requiring that computation types
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only occur in strictly positive positions. This allows us to shallowly embed the conceptual framework
in Agda, but may be more restrictive than strictly necessary. We discuss further limitations of the
approach and compare with previous work in § 3.5.

3.1 Generalizing Free to Support Higher-Order Operations
As summarized in § 2.1, Free Δ A is the type of abstract syntax trees representing computations
over the e�ect signature Δ. Our objective is to arrive at a more general type of abstract syntax trees
representing computations involving (possibly) higher-order operations. To realize this objective,
let us consider how to syntactically represent this variant of the censor operation (§ 1.2), where M
is the type of abstract syntax trees whose type we wish to de�ne:
censor>? : (String→ String)→ M >→ M >

We call the second parameter of this operation a computation parameter. Using Free, computation
parameters can only be encoded as continuations; i.e., inside k of the impure constructor:
impure : (op : Op Δ) (k : Ret Δ op→ Free Δ A)→ Free Δ A

But the computation parameter of censor>? is not a continuation, since
do (censor>? f m); 8out s . censor>? f (do m; 8out s).

As a �rst attempt at generalizing Free, we might de�ne a type of abstract syntax trees where all
operations have a computation parameter. The E�ect1 signature type (left) represents an e�ect
signature for this case, where ParRet de�nes the return type of the computation parameter of each
operation. The syntax tree type on the right de�nes a type of abstract syntax trees where each
operation has exactly one computation parameter (k ):

record E�ect1 : Set1 where
field Op : Set

ParRet : Op→ Set
Ret : Op→ Set

data He�y1 (H : E�ect1) (A : Set) : Set where
pure1 : A→ He�y1 H A
impure1 : (op : Op H )

(k : He�y1 H (ParRet H op))
(k : Ret H op→ He�y1 H A)

→ He�y1 H A

However, algebraic operations generally do not have any computation parameters, and many
higher-order operations have more than one (e.g., the catch operation discussed in § 2.5). For this
reason, we further generalize e�ect signatures to also de�ne how many computation parameters
a computation has: the ParAr of the E�ect2 signature below (left) is a type that represents the
computation parameter arity of each operation. The abstract syntax tree type (right) de�nes abstract
syntax trees that have as many branches as ParAr has constructors:

record E�ect2 : Set1 where
field Op : Set

ParAr : Op→ Set
ParRet : Op→ Set
Ret : Op→ Set

data He�y2 (H : E�ect2) (A : Set) : Set where
pure2 : A→ He�y2 H A
impure2 : (op : Op H )

(k : ParAr H op→ He�y2 H (ParRet H op))
(k : Ret H op→ He�y2 H A)

→ He�y2 H A

We can now use E�ect2 and He�y2 to de�ne the syntax of operations with computation parameters,
such as catch and censor>? . However, the E�ect2 signature restricts all computation parameters to
have the same return type. This unnecessarily precludes some higher-order operations, such as
as a more general operation for exception catching 8catch-gen : M A→ M B→ M (A ] B) which
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data CensorOp : Set where
censor : (String→ String)→ CensorOp

Censor : E�ect�

Op� Censor = CensorOp
Fork Censor (censor f ) = record
{ Op = > ; Ret = _ _→> }

Ret� Censor (censor s) = >

censor>? : (String→ String)→ He�y (Censor u H ) >→ He�y (Censor u H ) >
censor>? f m = impure (inj1 (censor f )) (_ _→ m) pure

Fig. 2. A higher-order censor e�ect and operation, with a single computation parameter (declared with
Op = > in the e�ect signature top right) with return type > (declared with Ret = _ _→> top right)

returns either A or B, depending on whether the �rst computation parameter throws an exception
at run time. As a last generalization, we therefore allow each computation parameter to have a
di�erent return type. We realize this generalization by making the return type of each computation
depend on ParAr in the E�ect3 type below, such that the return type of computation parameters
varies depending on which computation parameter arity constructor (ParAr) it is given:
record E�ect3 : Set1 where
field
Op : Set
ParAr : Op→ Set
ParRet : (op : Op)

→ ParAr op→ Set
Ret : Op→ Set

data He�y3 (H : E�ect3) (A : Set) : Set where
pure3 : A→ He�y3 H A
impure3 : (op : Op H )

(k : (a : ParAr H op)→ He�y3 H (ParRet H op a))
(k : Ret H op→ He�y3 H A)
→ He�y3 H A

Notice that ParAr and ParRet is actually a signature in disguise. In other words, E�ect3 and He�y3
are equivalent to the following notion of higher-order e�ect signature (H : E�ect� ) and abstract
syntax trees over these:

record E�ect� : Set1 where
field Op� : Set

Fork : Op� → E�ect
Ret� : Op� → Set

data He�y (H : E�ect� ) (A : Set) : Set where
pure : A→ He�y H A
impure : (op : Op� H )

(k : (a : Op (Fork H op))→ He�y H (Ret (Fork H op) a))
(k : Ret� H op→ He�y H A)
→ He�y H A

This type of He�y trees can be used to de�ne higher-order operations with an arbitrary number
of computation parameters, with arbitrary return types. Using this type, and using a co-product
for higher-order e�ect signatures (_u_) which is analogous to the co-product for algebraic e�ect
signatures in § 2.2, Figure 2 represents the syntax of the censor>? operation.
Just like Free, He�y trees can be sequenced using monadic bind. Unlike for Free, the monadic

bind of He�y is not expressible in terms of the standard fold over He�y trees. The di�erence
between Free and He�y is that Free is a regular data type whereas He�y is a nested datatype [Bird
and Paterson 1999]. The fold of a nested data type is limited to describe natural transformations. As
Bird and Paterson [1999] show, this limitation can be overcome by using a generalized fold, but for
the purpose of this paper it su�ces to de�ne monadic bind as a recursive function:
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_�=_ : He�y H A→ (A→ He�y H B)→ He�y H B
pure x �= g = g x
impure op k k �= g = impure op k (_ x → k x �= g)

The bind behaves similarly to the bind for Free; i.e., m�= g concatenates g to all the leaves in the
continuations (but not computation parameters) of m.
In § 3.4 we show how to modularly elaborate higher-order operations into more primitive

algebraic e�ects and handlers (i.e., computations over Free), by folding modular elaboration algebras
(hefty algebras) over He�y trees. First, we show (in § 3.2) how He�y trees support programming
against an interface of both algebraic and higher-order operations. We also address (in § 3.3)
the question of how to encode e�ect signatures for higher-order operations whose computation
parameters have polymorphic return types, such as the highlighted A below:

8catch : He�y H A → He�y H A → He�y H A

3.2 Programs with Algebraic and Higher-Order E�ects
Any algebraic e�ect signature can be lifted to a higher-order e�ect signature with no fork (i.e., no
computation parameters):
Li� : E�ect→ E�ect�

Op� (Li� Δ) = Op Δ

Fork (Li� Δ) _ = Nil
Ret� (Li� Δ) = Ret Δ

Using this e�ect signature, and using higher-order e�ect row insertion witnesses analogous to the
ones we de�ned and used in § 2.2, the following smart constructor lets us represent any algebraic
operation as a He�y computation:
↑_ : {| w : H ∼ Li� Δ ⊲ H′ |} → (op : Op Δ)→ He�y H (Ret Δ op)

Using this notion of lifting, He�y trees can be used to program against interfaces of both higher-
order and plain algebraic e�ects.

3.3 Higher-Order Operations with Polymorphic Return Types
Let us consider how to de�ne Catch as a higher-order e�ect. Ideally, we would de�ne an operation
that is parameterized by a return type of the branches of a particular catch operation, as shown on
the left, such that we can de�ne the higher-order e�ect signature on the right:19

data CatchOpd : Set1 where
catchd : Set→ CatchOpd

Catchd : E�ect�

Op� Catchd = CatchOpd

Fork Catchd (catchd A) = record
{ Op = Bool; Ret = _ _→ A }

Ret� Catchd (catchd A) = A

The Fork �eld on the right says that Catch has two sub-computations (since Bool has two construc-
tors), and that each computation parameter has some return type A. However, the signature on the
right above is not well de�ned!
The problem is that, because CatchOpd has a constructor that quanti�es over a type (Set), the

CatchOpd type lives in Set1. Consequently it does not �t the de�nition of E�ect� , whose operations
live in Set. There are two potential solutions to this problem: (1) increase the universe level of
19d is for dubious.
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E�ect� to allow Op� to live in Set1; or (2) use a universe of types [Martin-Löf 1984]. Either solution
is applicable here. However, for some operations (e.g., _ in § 5.1) it is natural to model types as an
interface that we are programming against. For this reason, using a type universe is a natural �t.

A universe of types is a (dependent) pair of a syntax of types (Ty : Set) and a semantic function
(È_É : Ty→ Set) de�ning the meaning of the syntax by re�ecting it into Agda’s Set:
record Universe : Set1 where
field Ty : Set

È_É : Ty→ Set

Using type universes, we can parameterize the catch constructor on the left below by a syntactic
type Ty of some universe u, and use the meaning of this type (È t É) as the return type of the
computation parameters in the e�ect signature on the right below:

data CatchOp {| u : Universe |} : Set where
catch : Ty→ CatchOp

Catch : {| u : Universe |} → E�ect�

Op� Catch = CatchOp
Fork Catch (catch t) = record
{ Op = Bool; Ret = _ _→ È t É }

Ret� Catch (catch t) = È t É
While the universe of types encoding restricts the kind of type that catch can have as a return
type, the e�ect signature is parametric in the universe. Thus the implementer of the Catch e�ect
signature (or interface) is free to choose a su�ciently expressive universe of types.

3.4 He�y Algebras
As shown in § 2.5, the higher-order catch operation can be encoded as a non-modular elaboration:
catch m1 m2 = (♯ ((given hThrow handle m1) �))�= (maybe pure m2)

We can make this elaboration modular by expressing it as an algebra over He�y trees containing
operations of the Catch signature. To this end, we will use the following notion of hefty algebra
(Alg� ) and fold (or catamorphism [Meijer et al. 1991], cata� ) for He�y:
record Alg� (H : E�ect� ) (F : Set→ Set) : Set1 where
field alg : (op : Op� H )

(k : (s : Op (Fork H op))→ F (Ret (Fork H op) s))
(k : Ret� H op→ F A)
→ F A

cata� : (∀ {A}→ A→ F A)→ Alg� H F → He�y H A→ F A
cata� g a (pure x) = g x
cata� g a (impure op k k) = alg a op (cata� g a ◦k ) (cata� g a ◦ k)

Here Alg� de�nes how to transform an impure node of type He�y H A into a value of type F A,
assuming we have already folded the computation parameters and continuation into F values. A
nice property of algebras is that they are closed under higher-order e�ect signature sums:
_g_ : Alg� H1 F → Alg� H2 F → Alg� (H1 u H2) F
alg (A1 g A2) = [ alg A1 , alg A2 ]

By de�ning elaborations as hefty algebras (below) we can compose them using _g_.
Elaboration : E�ect� → E�ect→ Set1
Elaboration H Δ = Alg� H (Free Δ)
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An Elaboration H Δ elaborates higher-order operations of signature H into algebraic operations of
signature Δ. Given an elaboration, we can generically transform any hefty tree into more primitive
algebraic e�ects and handlers:
elaborate : Elaboration H Δ→ He�y H A→ Free Δ A
elaborate = cata� pure

Example 3.1. The elaboration below is analogous to the non-modular catch elaboration:
eCatch : {| u : Universe |} {| w : Δ ∼ Throw I Δ′ |} → Elaboration Catch Δ

alg eCatch (catch t)k k = let m1 =k true; m2 =k false in
(♯ ((given hThrow handle m1) �))�= maybe k (m2 �= k)

The elaboration is essentially the same as its non-modular counterpart, except that it now uses the
universe of types encoding discussed in § 3.3, and that it now transforms syntactic representations
of higher-order operations instead. Using this elaboration, we can, for example, run the following
example program involving the state e�ect from Figure 1, the throw e�ect from § 2.1, and the catch
e�ect de�ned here:
transact : {| wB : H ∼ Li� State ⊲ H′ |} {| wC : H ∼ Li� Throw ⊲ H′′ |} {| w : H ∼ Catch ⊲ H′′′ |}

→ He�y H N
transact = do
↑ (put 1)
8catch (do ↑ (put 2); (↑ throw)�= ⊥-elim) (pure �)
↑ get

The program �rst sets the state to 1; then to 2; and then throws an exception. The exception is
caught, and control is immediately passed to the �nal operation in the program which gets the
state. By also de�ning elaborations for Li� and Nil, we can elaborate and run the program:
eTransact : Elaboration (Catch u Li� Throw u Li� State u Li� Nil) (Throw ⊕ State ⊕ Nil)
eTransact = eCatch g eLi� g eLi� g eNil

test-transact : un ( ( given hSt
handle ( ( given hThrow

handle (elaborate eTransact transact)))
� ) 0 ) ≡ (just 2 , 2)

test-transact = refl

The program above uses a so-called global interpretation of state, where the put operation in the
“try block” of 8catch causes the state to be updated globally. In § 5.2.2 we return to this example
and show how we can modularly change the elaboration of the higher-order e�ect Catch to yield
a so-called transactional interpretation of state where the put operation in the try block is rolled
back when an exception is thrown.

3.5 Discussion and Limitations
Which (higher-order) e�ects can we describe using hefty trees and algebras? Since the core mech-
anism of our approach is modular elaboration of higher-order operations into more primitive
e�ects and handlers, it is clear that hefty trees and algebras are at least as expressive as standard
algebraic e�ects. The crucial bene�t of hefty algebras over algebraic e�ects is that higher-order
operations can be declared and implemented modularly. In this sense, hefty algebras provide a
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modular abstraction layer over standard algebraic e�ects that, although it adds an extra layer
of indirection by requiring both elaborations and handlers to give a semantics to hefty trees, is
comparatively cheap and implemented using only standard techniques such as � -algebras.
Conceptually, we expect that hefty trees can capture any monadic higher-order e�ect whose

signature is given by a higher-order functor on Set→ Set. Filinski [1999] showed that any monadic
e�ect can be represented using continuations, and given that we can encode the continuation
monad using algebraic e�ects [Schrijvers et al. 2019] in terms of the sub/jump operations (§ 5.2.2)
by Fiore and Staton [2014]; Thielecke [1997], it is possible to elaborate any monadic e�ect into
algebraic e�ects using hefty algebras. The current Agda implementation, though, is slightly more
restrictive. The type of e�ect signatures, E�ect� , approximates the set of higher-order functors by
constructively enforcing that all occurrences of the computation type are strictly positive. Hence,
there may be higher-order e�ects that are well-de�ned semantically, but which cannot be captured
in the Agda encoding presented here.
When comparing hefty trees to scoped e�ects, we observe two important di�erences. The �rst

di�erence is that the syntax of programs with higher-order e�ects is fundamentally more restrictive
when using scoped e�ects. Speci�cally, as discussed at the end of § 2.6.4, scoped e�ects impose
a restriction on operations that their computation parameters must pass control directly to the
continuation of the operation. Hefty trees, on the other hand, do not restrict the control �ow of
computation parameters, meaning that they can be used to de�ne a broader class of operations. For
instance, in § 5.1 we de�ne a higher-order e�ect for function abstraction, which is an example of
an operation where control does not �ow from the computation parameter to the continuation.
The second di�erence is that hefty algebras and scoped e�ects and handlers are modular in

di�erent ways. Scoped e�ects are modular because we can modularly de�ne, compose, and handle
scoped operations, by applying scoped e�ect handlers in sequence; i.e.:

Prog Δ0 W0 A0
ℎ1−→ Prog Δ1 W1 A1

ℎ2−→ · · · ℎ=−−→ Prog Nil Nil A=

As discussed in § 2.6.3, each handler application modularly “weaves” e�ects through sub compu-
tations, using a dedicated glue function. Hefty algebras, on the other hand, work by applying an
elaboration algebra assembled from modular components in one go. The program resulting from
elaboration can then be handled using standard algebraic e�ect handlers; i.e.:

He�y (H0 u · · · u H<) A
elaborate (E0 g · · · g E< )
−−−−−−−−−−−−−−−−−−−→ Free Δ �

ℎ1−→ · · · ℎ:−−→ Free Nil A

Because hefty algebras eagerly elaborate all higher-order e�ects in one go, they do not require
similar “weaving” as scoped e�ect handlers. A consequence of this di�erence is that scoped e�ect
handlers exhibit more e�ect interaction by default; i.e., di�erent permutations of handlers may give
di�erent semantics. In contrast, when using hefty algebras we have to be more explicit about such
e�ect interactions. We discuss this di�erence in more detail in § 5.2.2.

4 VERIFYING ALGEBRAIC LAWS FOR HIGHER-ORDER EFFECTS
A key idea behind algebraic e�ects is that we can state and prove algebraic laws about e�ectful
operations. In this section we show how to verify the lawfulness of catch , and compare the e�ort
required to verify lawfulness using hefty algebras vs. a non-modular elaboration for catch.
The record type shown below de�nes the interface of a monad given by the record parameters

M , return, and _�=_. The �elds on the left below assert that M has a throw and catch operation, as
well as a run function which runs a computation to yield a result R : Set→ Set.20 On the right are
20The notation {| u |} : Universe treats the u �eld as an instance that can be automatically resolved in the scope of the
CatchIntf record type.
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u (CatchImpl0 {| u |}) = u
throw CatchImpl0 = 8throw�

catch CatchImpl0 = 8catch
R CatchImpl0 = Free Δ ◦Maybe
run CatchImpl0 = h ◦ e

bind-throw CatchImpl0 k = refl
catch-return CatchImpl0 x m = refl
catch-throw1 CatchImpl0 m = begin

h (e (8catch 8throw� m))
≡〈 refl 〉
h ((♯ h (e 8throw� )) �= maybe pure ((e m) �= pure))
≡〈 cong! (Free-unitA -≡ (e m)) 〉
h (e m) �

catch-throw2 CatchImpl0 m = begin
h (e (8catch m 8throw� ))
≡〈 refl 〉
h ((♯ h (e m)) �= maybe pure ((e 8throw� ) �= pure))
≡〈 cong (_ P → h ((♯ h (e m)) �= P))

(extensionality (_ x →
cong (_ P → maybe pure P x)
(cong (impure (inj1 throw))

(extensionality (_ x →⊥-elim x))))) 〉
h ((♯ h (e m)) �= maybe pure 8throw)
≡〈 catch-throw-lem (e m) 〉
h (e m) �

u (CatchImpl1 {| u |}) = u
throw CatchImpl1 = 8throw
catch CatchImpl1 = catch
R CatchImpl1 = Free Δ ◦Maybe
run CatchImpl1 = h

bind-throw CatchImpl1 k = refl
catch-return CatchImpl1 x m = refl
catch-throw1 CatchImpl1 m = refl

catch-throw2 CatchImpl1 m = begin
h (catch m 8throw)
≡〈 refl 〉

h ((♯ h m) �= maybe pure 8throw)
≡〈 catch-throw-lem m 〉
h m �

Fig. 3. Lawfulness for the modular elaboration (le�) and the non-modular elaboration of catch (right)

the laws that constrain the behavior of the throw and catch operations. The laws are borrowed
from Delaware et al. [2013].
record CatchIntf (M : Set→ Set)

(return : ∀ {A}→ A→ M A)
(_�=_ : ∀ {A B}

→ M A→ (A→ M B)→ M B) : Set1 where
field {| u |} : Universe

throw : {t : Ty}→ M È t É
catch : {t : Ty}→ M È t É → M È t É → M È t É
R : Set→ Set
run : M A→ R A

bind-throw : {t1 t2 : Ty} (k : È t1 É → M È t1 É)
→ run (throw �= k) ≡ run throw

catch-throw1 : {t : Ty} (m : M È t É)
→ run (catch throw m) ≡ run m

catch-throw2 : {t : Ty} (m : M È t É)
→ run (catch m throw) ≡ run m

catch-return : {t : Ty} (x : È t É) (m : M È t É)
→ run (catch (return x) m) ≡ run (return x)

Figure 3 (left) shows that the elaboration and handler from the previous section satisfy these laws.
The �gure uses 8throw� as an abbreviation for ↑ throw �= ⊥-elim, h as an abbreviation of the
handler for hThrow, and e as an abbreviation of elaborate. The proofs are equational rewriting
proofs akin to pen-and-paper proofs, except that each step is mechanically veri�ed. The equational
rewriting steps use the ≡-Reasoning module from the Agda standard library, and have the form
t1 ≡〈 eq 〉 t2 where t1 is the term before the rewrite, t2 is the term after, and eq is a proof that t1 and
t2 are equal. The question is, how much overhead the hefty algebra encoding adds compared to the
non-modular abbreviation of catch from § 2.5? To answer this question, Figure 3 also contains the
implementation and proof of a non-modular elaboration of catch (CatchImpl1 on the right).
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The side-by-side comparison shows that hefty algebra elaborations add some administrative over-
head. In particular, elaborations introduce some redundant binds, as in the sub-term (e m)�= pure
of the term resulting from the �rst equational rewrite in catch-throw1 on the left above. These
extraneous binds are rewritten away by applying the free monad right unit law (Free-unitA -≡).
Another source of overhead of using hefty algebras is that Agda is unable to infer that the term
resulting from elaborating 8throw� is equal to the term given by the smart constructor 8throw. We
prove this explicitly on the left above in the second-to-last equational rewrite of catch-throw2. Both
proofs make use of functional extensionality (which is postulated since we cannot prove functional
extensionality in general in Agda), and a straightforward catch-throw-lem lemma that we prove by
induction on the structure of the computation parameter of the lemma.

Except for the administrative overhead discussed above, the proofs have the same structure, and
the e�ort of verifying algebraic laws for higher-order e�ects de�ned using hefty algebras is about
the same as verifying algebraic laws for direct, non-modular encodings.

5 EXAMPLES
As discussed in § 2.5, there is a wide range of examples of higher-order e�ects that cannot be
de�ned as algebraic operations directly, and are typically de�ned as non-modular elaborations
instead. In this section we give examples of such e�ects and show to de�ne them modularly using
hefty algebras. The artifact [Bach Poulsen and Reinders 2023] contains the full examples.

5.1 _ as a Higher-Order Operation
As recently observed by van den Berg et al. [2021], the (higher-order) operations for _ abstraction
and application are neither algebraic nor scoped e�ects. We demonstrate how hefty algebras allow
us to modularly de�ne and elaborate an interface of higher-order operations for _ abstraction and
application, inspired by Levy’s call-by-push-value [Levy 2006]. The interface we will consider is
parametric in a universe of types given by the following record:
record LamUniverse : Set1 where
field {| u |} : Universe

_�_ : Ty→ Ty→ Ty
c : Ty→ Ty

The _�_ �eld represents a function type, whereas c is the type of thunk values. Distinguishing
thunks in this way allows us to assign either a call-by-value or call-by-name semantics to the
interface for _ abstraction summarized by the following smart constructors:
8lam : {t1 t2 : Ty}→ (È c t1 É → He�y H È t2 É) → He�y H È (c t1)� t2 É
8var : {t : Ty} → È c t É → He�y H È t É
8app : {t1 t2 : Ty}→ È (c t1)� t2 É → He�y H È t1 É → He�y H È t2 É

Here 8lam is a higher-order operation with a function typed computation parameter and whose
return type is a function value (È c t1� t2 É). The 8var operation accepts a thunk value as argument
and yields a value of a matching type. The 8app operation is also a higher-order operation: its
�rst parameter is a function value type, whereas its second parameter is a computation parameter
whose return type matches the function value parameter type.

The interface above de�nes a kind of higher-order abstract syntax [Pfenning and Elliott 1988]
which piggy-backs on Agda functions for name binding. However, unlike most Agda functions, the
constructors above represent functions with side-e�ects. The representation in principle supports
functions with arbitrary side-e�ects since it is parametric in what the higher-order e�ect signature
H is. Furthermore, we can assign di�erent operational interpretations to the operations in the
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interface without having to change the interface or programs written against the interface. To
illustrate we give two di�erent implementations of the interface: one that implements a call-by-value
evaluation strategy, and one that implements call-by-name.

5.1.1 Call-by-Value. We give a call-by-value interpretation 8lam by generically elaborating to
algebraic e�ect trees with any set of e�ects Δ. Our interpretation is parametric in proof witnesses
that the following isomorphisms hold for value types (↔ is the type of isomorphisms from the
Agda standard library):21

iso1 : {t1 t2 : Ty}→ È t1� t2 É ↔ (È t1 É → Free Δ È t2 É)
iso2 : {t : Ty} → È c t É ↔ È t É

The �rst isomorphism says that a function value type corresponds to a function which accepts a
value of type t1 and produces a computation whose return type matches the function type. The
second says that thunk types coincide with value types. Using these isomorphisms, the following
de�nes a call-by-value elaboration of functions:
eLamCBV : Elaboration Lam Δ

alg eLamCBV lam k k = k (fromk )
alg eLamCBV (var x) _ k = k (to x)
alg eLamCBV (app f )k k = do
a←k �
v← to f (from a)
k v

The lam case passes the function body given by the sub-tree k as a value to the continuation,
where the from function mediates the sub-tree of type È c t1 É → Free Δ È t2 É to a value type
È (c t1)� t2 É, using the isomorphism iso1. The var case uses the to function to mediate a È c t É
value to a È t É value, using the isomorphism iso2. The app case �rst eagerly evaluates the argument
expression of the application (in the sub-treek ) to an argument value, and then passes the resulting
value to the function value of the application. The resulting value is passed to the continuation.

Using the elaboration above, we can evaluate programs such as the following which uses both
the higher-order lambda e�ect, the algebraic state e�ect, and assumes that our universe has a
number type È num É ↔ N:
ex : He�y (Lam u Li� State u Li� Nil) N
ex = do
↑ put 1
f ← 8lam (_ x → do

n1← 8var x
n2← 8var x
pure (from ((to n1) + (to n2))))

v← 8app f incr
pure (to v)
where incr = do s0← ↑ get; ↑ put (s0 + 1); s1← ↑ get; pure (from s1)

The program�rst sets the state to 1. Then it constructs a function that binds a variable x, dereferences
the variable twice, and adds the two resulting values together. Finally, the application in the second-
to-last line applies the function with an argument expression which increments the state by 1 and
21The two sides of an isomorphism A↔ B are given by the functions to : A→ B and from : B→ A.
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returns the resulting value. Running the program produces 4 since the state increment expression
is eagerly evaluated before the function is applied.
elab-cbv : Elaboration (Lam u Li� State u Li� Nil) (State ⊕ Nil)
elab-cbv = eLamCBV g eLi� g eNil

test-ex-cbv : un ((given hSt handle (elaborate elab-cbv ex)) 0) ≡ (4 , 2)
test-ex-cbv = refl

5.1.2 Call-by-Name. The key di�erence between the call-by-value and the call-by-name interpre-
tation of our _ operations is that we now assume that thunks are computations. That is, we assume
that the following isomorphisms hold for value types:
iso1 : {t1 t2 : Ty}→ È t1� t2 É ↔ (È t1 É → Free Δ È t2 É)
iso2 : {t : Ty} → È c t É ↔ Free Δ È t É

Using these isomorphisms, the following de�nes a call-by-name elaboration of functions:
eLamCBN : Elaboration Lam Δ

alg eLamCBN lam k k = k (fromk )
alg eLamCBN (var x) _ k = to x �= k
alg eLamCBN (app f )k k = to f (from (k �))�= k

The case for lam is the same as the call-by-value elaboration. The case for var now needs to force
the thunk by running the computation and passing its result to k. The case for app passes the
argument sub-tree (k ) as an argument to the function f , runs the computation resulting from doing
so, and then passes its result to k. Running the example program ex from above now produces 5
as result, since the state increment expression in the argument of 8app is thunked and run twice
during the evaluation of the called function.
elab-cbn : Elaboration (Lam u Li� State u Li� Nil) (State ⊕ Nil)
elab-cbn = eLamCBN g eLi� g eNil

test-ex-cbn : un ((given hSt handle (elaborate elab-cbn ex)) 0) ≡ (5 , 3)
test-ex-cbn = refl

5.2 Optionally Transactional Exception Catching
A feature of scoped e�ect handlers [Piróg et al. 2018; Wu et al. 2014; Yang et al. 2022] is that
changing the order of handlers makes it possible to obtain di�erent semantics of e�ect interaction.
A classical example of e�ect interaction is the interaction between state and exception catching
that we brie�y considered at the end of § 3.4 in connection with this transact program:
transact : {| wB : H ∼ Li� State ⊲ H′ |} {| wC : H ∼ Li� Throw ⊲ H′′ |} {| w : H ∼ Catch ⊲ H′′′ |}

→ He�y H N
transact = do
↑ put 1
8catch (do ↑ put 2; (↑ throw)�= ⊥-elim) (pure �)
↑ get

The state and exception catching e�ect can interact to give either of these two semantics:
(1) Global interpretation of state, where the transact program returns 2 since the put operation

in the “try” block causes the state to be updated globally.
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(2) Transactional interpretation of state, where the transact program returns 1 since the state
changes of the put operation are rolled back when the “try” block throws an exception.

With monad transformers [Cenciarelli and Moggi 1993; Liang et al. 1995] we can recover either
of these semantics by permuting the order of monad transformers. With scoped e�ect handlers
we can also recover either by permuting the order of handlers. However, the eCatch elaboration
in § 3.4 always gives us a global interpretation of state. In this section we demonstrate how we
can recover a transactional interpretation of state by using a di�erent elaboration of the catch
operation into an algebraically e�ectful program with the throw operation and the o�-the-shelf
sub/jump control e�ects due to Fiore and Staton [2014]; Thielecke [1997]. The di�erent elaboration
is modular in the sense that we do not have to change the interface of the catch operation nor any
programs written against the interface.

5.2.1 Sub/Jump. We recall how to de�ne two operations, sub and jump, due to [Fiore and Staton
2014; Thielecke 1997]. We de�ne these operations as algebraic e�ects following Schrijvers et al.
[2019]. The algebraic e�ects are summarized by the following smart constructors where CC Ref is
associated with the sub/jump operations:
8sub : {| w : Δ ∼ CC Ref I Δ′ |} (b : Ref t→ Free Δ A) (k : È t É → Free Δ A)→ Free Δ A
8jump : {| w : Δ ∼ CC Ref I Δ′ |} (ref : Ref t) (x : È t É)→ Free Δ B

An operation 8sub f g gives a computation f access to the continuation g via a reference value
Ref t which represents a continuation expecting a value of type È t É. The 8jump operation invokes
such continuations. The operations and their handler (abbreviated to h) satisfy the following laws:

h (8sub (_ _→ p) k) ≡ h p

h (8sub (_ r→ m�= 8jump r) k) ≡ h (m�= k)

h (8sub p (8jump r′)) ≡ h (p r′)

h (8sub p q�= k) ≡ h (8sub (_ x→ p x�= k ) (_ x→ q x�= k))

The last law asserts that 8sub and 8jump are algebraic operations, since their computational sub-
terms behave as continuations. Thus, we encode 8sub and its handler as an algebraic e�ect.

5.2.2 Optionally Transactional Exception Catching. By using the 8sub and 8jump operations in our
elaboration of catch, we get a semantics of exception catching whose interaction with state depends
on the order that the state e�ect and sub/jump e�ect is handled.
eCatchOT : {| w1 : Δ ∼ CC Ref I Δ′ |} {| w2 : Δ ∼ Throw I Δ′′ |} → Elaboration Catch Δ

alg eCatchOT (catch x)k k = let m1 =k true; m2 =k false in
8sub (_ r → (♯ ((given hThrow handle m1) �))�= maybe k (8jump r (from �)))

(_ _→ m2 �= k)

The elaboration uses 8sub to capture the continuation of a higher-order catch operation. If no
exception is raised, then control �ows to the continuation k without invoking the continuation of
8sub. Otherwise, we jump to the continuation of 8sub, which runs m2 before passing control to k.
Capturing the continuation in this way interacts with state because the continuation of 8sub may
have been pre-applied to a state handler that only knows about the “old” state. This happens when
we invoke the state handler before the handler for sub/jump: in this case we get the transactional
interpretation of state, so running transact gives 1. Otherwise, if we run the sub/jump handler
before the state handler, we get the global interpretation of state and the result 2.
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The sub/jump elaboration above is more involved than the scoped e�ect handler that we consid-
ered in § 2.6. However, the complicated encoding does not pollute the higher-order e�ect interface,
and only turns up if we strictly want or need e�ect interaction.

5.3 Logic Programming
Following [Schrijvers et al. 2014; Wu et al. 2014; Yang et al. 2022] we can de�ne a non-deterministic
choice operation (_8or_) as an algebraic e�ect, to provide support for expressing the kind of non-
deterministic search for solutions that is common in logic programming. We can also de�ne a
8fail operation which indicates that the search in the current branch was unsuccessful. The smart
constructors below are the lifted higher-order counterparts to the 8or and 8fail operations:
_8or�_ : {| H ∼ Li� Choice ⊲ H′ |} → He�y H A→ He�y H A→ He�y H A
8fail� : {| H ∼ Li� Choice ⊲ H′ |} → He�y H A

A useful operator for cutting non-deterministic search short when a solution is found is the 8once
operator. The 8once operator is not an algebraic e�ect, but a scoped (and thus higher-order) e�ect.
8once : {| w : H ∼ Once ⊲ H′ |} {t : Ty}→ He�y H È t É → He�y H È t É

We can de�ne the meaning of the once operator as the following elaboration:
eOnce : {| Δ ∼ Choice I Δ′ |} → Elaboration Once Δ
alg eOnce oncek k = do
l← ♯ ((given hChoice handle (k �)) �)
maybe k 8fail (head l)

The elaboration runs the branch (k ) of once under the hChoice handler to compute a list of all
solutions ofk . It then tries to choose the �rst solution and pass that to the continuation k. If the
branch has no solutions, we fail. Under a strict evaluation order, the elaboration computes all
possible solutions which is doing more work than needed. Agda 2.6.2.2 does not have a speci�ed
evaluation strategy, but does compile to Haskell which is lazy. In Haskell, the solutions would be
lazily computed, such that the once operator cuts search short as intended.

5.4 Concurrency
Finally, we consider how to de�ne higher-order operations for concurrency, inspired by Yang
et al.’s [2022] resumption monad [Claessen 1999; Piróg and Gibbons 2014; Schmidt 1986] de�nition
using scoped e�ects. We summarize our encoding and compare it with the resumption monad. The
goal is to de�ne the following operations:
8spawn : {t : Ty}→ (m1 m2 : He�y H È t É)→ He�y H È t É
8atomic : {t : Ty}→ He�y H È t É → He�y H È t É

The operation 8spawn m1 m2 spawns two threads that run concurrently, and returns the value
produced bym1 after both have �nished. The operation 8atomicm represents a block to be executed
atomically; i.e., no other threads run before the block �nishes executing.
We elaborate 8spawn by interleaving the sub-trees of its computations. To this end, we use a

dedicated function which interleaves the operations in two trees and yields as output the value of
the left input tree (the �rst computation parameter):
interleave; : {Ref : Ty→ Set}→ Free (CC Ref ⊕ Δ) A→ Free (CC Ref ⊕ Δ) B

→ Free (CC Ref ⊕ Δ) A

Here, the CC e�ect is the sub/jump e�ect that we also used in § 5.2.2. The interleave; function
ensures atomic execution by only interleaving code that is not wrapped in a 8sub operation. We
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elaborate Concur into CC as follows, where the to-front and from-front functions use the row
insertion witness w0 to move the CC e�ect to the front of the row and back again:
eConcur : {Ref : Ty→ Set} {| w : Δ ∼ CC Ref I Δ′′ |} → Elaboration Concur Δ
alg eConcur (spawn t) k k =
from-front (interleave; (to-front (k true)) (to-front (k false)))�= k

alg eConcur (atomic t)k k = 8sub (_ ref →k ��= 8jump ref ) k

The elaboration uses 8sub as a delimiter for blocks that should not be interleaved, such that the
interleave; function only interleaves code that does not reside in atomic blocks. At the end of an
atomic block, we 8jump to the (possibly interleaved) computation context, k. By using 8sub to
explicitly delimit blocks that should not be interleaved, we have encoded what Wu et al. [2014, § 7]
call scoped syntax.

Example 5.1. Below is an example program that spawns two threads that use the Output e�ect.
The �rst thread prints 0, 1, and 2; the second prints 3 and 4.
ex-01234 : He�y (Li� Output u Concur u Li� Nil) N
ex-01234 = 8spawn (do ↑ out "0"; ↑ out "1"; ↑ out "2"; pure 0)

(do ↑ out "3"; ↑ out "4"; pure 0)
Since the Concur e�ect is elaborated to interleave the e�ects of the two threads, the printed output
appears in interleaved order:
test-ex-01234 : un ( ( given hOut

handle ( ( given hCC
handle (elaborate concur-elab ex-01234)

) � ) ) � ) ≡ (0 , "03142")
test-ex-01234 = refl

The following program spawns an additional thread with an 8atomic block
ex-01234567 : He�y (Li� Output u Concur u Li� Nil) N
ex-01234567 = 8spawn ex-01234

(8atomic (do ↑ out "5"; ↑ out "6"; ↑ out "7"; pure 0))
Inspecting the output, we see that the additional thread indeed computes atomically:
test-ex-01234567 : un ( ( given hOut

handle ( ( given hCC
handle (elaborate concur-elab ex-01234567)

) � ) ) � ) ≡ (0 , "05673142")
test-ex-01234567 = refl

The example above is inspired by the resumption monad, and in particular by the scoped e�ects
de�nition of concurrency due to Yang et al. [2022]. Yang et al. do not (explicitly) consider how to
de�ne the concurrency operations in a modular style. Instead, they give a direct semantics that
translates to the resumption monad which we can encode as follows in Agda (assuming resumptions
are given by the free monad):
data Resumption Δ A : Set where
done : A → Resumption Δ A
more : Free Δ (Resumption Δ A)→ Resumption Δ A
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We could elaborate into this type using a hefty algebra Alg� Concur (Resumption Δ) but that would
be incompatible with our other elaborations which use the free monad. For that reason, we emulate
the resumption monad using the free monad instead of using the Resumption type directly.

6 RELATEDWORK
As stated in the introduction of this paper, de�ning abstractions for programming constructs with
side e�ects is a research question with a long and rich history, which we brie�y summarize here.
Moggi [1989a] introduced monads as a means of modeling side e�ects and structuring programs
with side e�ects; an idea which Wadler [1992] helped popularize. A problem with monads is that
they do not naturally compose. A range of di�erent solutions have been developed to address this
issue [Cenciarelli andMoggi 1993; Filinski 1999; Jones and Duponcheel 1993; Steele Jr. 1994]. Of these
solutions, monad transformers [Cenciarelli and Moggi 1993; Jaskelio� 2008; Liang et al. 1995] is the
more widely adopted solution. However, more recently, algebraic e�ects [Plotkin and Power 2002]
was proposed as an alternative solution which o�ers some modularity bene�ts over monads and
monad transformers. In particular, whereasmonads andmonad transformersmay “leak” information
about the implementation of operations, algebraic e�ects enforce a strict separation between the
interface and implementation of operations. Furthermore, monad transformers commonly require
glue code to “lift” operations between layers of monad transformer stacks. While the latter problem
is addressed by the Monatron framework of Jaskelio� [2008], algebraic e�ects have a simple
composition semantics that does not require intricate liftings.
However, some e�ects, such as exception catching, did not �t into the framework of algebraic

e�ects. E�ect handlers [Plotkin and Pretnar 2009] were introduced to address this problem. Algebraic
e�ects and handlers has since been gaining traction as a framework for modeling and structuring
programs with side e�ects in a modular way. Several libraries have been developed based on the
idea such as Handlers in Action [Kammar et al. 2013], the freer monad [Kiselyov and Ishii 2015], or
Idris’ Effects DSL [Brady 2013b]; but also standalone languages such as E� [Bauer and Pretnar
2015], Koka [Leijen 2017], Frank [Lindley et al. 2017], and E�ekt [Brachthäuser et al. 2020].22
As discussed in § 1.2 and § 2.5, some modularity bene�ts of algebraic e�ects and handlers do

not carry over to higher-order e�ects. Scoped e�ects and handlers [Piróg et al. 2018; Wu et al.
2014; Yang et al. 2022] address this shortcoming for scoped operations, as we summarized in § 2.6.
This paper provides a di�erent solution to the modularity problem with higher-order e�ects. Our
solution is to provide modular elaborations of higher-order e�ects into more primitive e�ects
and handlers. We can, in theory, encode any e�ect in terms of algebraic e�ects and handlers.
However, for some e�ects, the encodings may be complicated. While the complicated encodings are
hidden behind a higher-order e�ect interface, complicated encodings may hinder understanding the
operational semantics of higher-order e�ects, and may make it hard to verify algebraic laws about
implementations of the interface. Our framework would also support elaborating higher-order
e�ects into scoped e�ects and handlers, which might provide bene�ts for veri�cation. We leave
this as a question to explore in future work.
Although not explicitly advertised, some standalone languages, such as Frank [Lindley et al.

2017] and Koka [Leijen 2017] do have some support for higher-order e�ects. The denotational
semantics of these features of these languages is unclear. A question for future work is whether the
modular elaborations we introduce could provide a denotational model.
A recent paper by van den Berg et al. [2021] introduced a generalization of scoped e�ects that

they call latent e�ects which supports a broader class of e�ects, including _ abstraction. While the
22A more extensive list of applications and frameworks can be found in Jeremy Yallop’s E�ects Bibliography: https:
//github.com/yallop/e�ects-bibliography
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framework appears powerful, it currently lacks a denotational model, and seems to require similar
weaving glue code as scoped e�ects. The solution we present in this paper does not require weaving
glue code, and is given by a modular but simple mapping onto algebraic e�ects and handlers.

Looking beyond purely functional models of semantics and e�ects, there are also lines of work
on modular support for side e�ects in operational semantics [Plotkin 2004]. Mosses’ Modular
Structural Operational Semantics [Mosses 2004] (MSOS) de�nes small-step rules that implicitly
propagate an open-ended set of auxiliary entities which encode common classes of e�ects, such as
reading or emitting data, stateful mutation, and even control e�ects [Sculthorpe et al. 2015]. The K
Framework [Rosu and Serbanuta 2010] takes a di�erent approach but provides many of the same
bene�ts. These frameworks do not encapsulate operational details but instead make it notationally
convenient to program (or specify semantics) with side-e�ects.

7 CONCLUSION
We have presented a new solution to the modularity problem with modeling and programming with
higher-order e�ects. Our solution allows programming against an interface of higher-order e�ects
in a way that provides e�ect encapsulation, meaning we can modularly change the implementation
of e�ects without changing programs written against the interface and without changing the
de�nition of any interface implementations. Furthermore, the solution requires a minimal amount
of glue code to compose language de�nitions.

We have shown that the framework supports algebraic reasoning on a par with algebraic e�ects
and handlers, albeit with some administrative overhead. While we have made use of Agda and
dependent types throughout this paper, the framework should be straightforward to port to less
dependently-typed functional languages, such as Haskell, OCaml, or Scala. An interesting direction
for future work is to explore whether the framework could provide a denotational model for
handling higher-order e�ects in standalone languages with support for e�ect handlers.
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