
Deriving Pretty-Big-Step Semantics
from Small-Step Semantics

Casper Bach Poulsen and Peter D. Mosses

Department of Computer Science, Swansea University, Swansea, UK,
cscbp@swansea.ac.uk, p.d.mosses@swansea.ac.uk

Abstract. Big-step semantics for languages with abrupt termination
and/or divergence suffer from a serious duplication problem, addressed by
the novel ‘pretty-big-step’ style presented by Charguéraud at ESOP’13.
Such rules are less concise than corresponding small-step rules, but they
have the same advantages as big-step rules for program correctness proofs.
Here, we show how to automatically derive pretty-big-step rules directly
from small-step rules by ‘refocusing’. This gives the best of both worlds:
we only need to write the relatively concise small-step specifications,
but our reasoning can be big-step as well as small-step. The use of
strictness annotations to derive small-step congruence rules gives further
conciseness.

Keywords: structural operational semantics, SOS, Modular SOS, pretty-
big-step semantics, small-step semantics, big-step semantics, natural
semantics, refocusing

1 Introduction

Structural operational semantics (SOS) are typically given in either small-step
(Plotkin 2004) or big-step (Kahn 1987) style. Big-step rules evaluate terms by
relating them to their computed values, whereas small-step evaluation involves
partly evaluated terms. Both styles are powerful frameworks for formalizing
operational semantics, and each has its own merits and limitations. For example,
small-step semantics is usually preferred for process algebras (Milner 1980),
interleaving, and type soundness proofs (Pierce 2002; Wright and Felleisen 1994),
whereas the big-step style is more suitable for proving correctness of program
transformations (Charguéraud 2013; Leroy and Grall 2009). An equally important
concern is the effort involved in specifying the semantics: rules should be concise,
but comprehensible. But which style requires less effort?

The answer to this question depends not only on conciseness, but also on
the application, i.e., on features of the specified language and properties that
the semantics will be used to reason about. When the language involves abrupt
termination, Charguéraud (2013) recently noted that big-step semantics (also
called natural semantics) duplicate premises and rules to propagate abrupt
termination and/or divergence. In contrast, the small-step style allows for more
concise specifications involving abrupt termination, and there is no need to specify

2 C. Bach Poulsen and P. D. Mosses

propagation of divergence. However, this would seem of little consolation if the use
of the semantics requires big-step reasoning. Charguéraud provides an alternative
by showing how to decompose big-step rules into simpler pretty-big-step rules.
Such rules allow for more concise specifications without sacrificing the ability to
do big-step reasoning. The style also incorporates coinductive reasoning similar
to coinductive big-step semantics (Leroy and Grall 2009).

Big-step SOS t⇒ b
t ::= minus(t, t) | n n ∈ N b ::= n | exc(n)

t1 ⇒ n1 t2 ⇒ n2 n1 ≥ n2 n = n1 − n2 [Big1]
minus(t1, t2)⇒ n

t1 ⇒ n1 t2 ⇒ exc(n′)
[Big2]

minus(t1, t2)⇒ exc(n′)

t1 ⇒ n1 t2 ⇒ n2 n1 < n2 [Big3]
minus(t1, t2)⇒ exc(0)

t1 ⇒ exc(n′)
[Big4]

minus(t1, t2)⇒ exc(n′)

Pretty-big-step SOS e ⇓ o
t ::= minus(t, t) | n n ∈ N e ::= t | minus1(o, t) | minus2(n, o) o ::= n | exc(n)
t1 ⇓ o1 minus1(o1, t2) ⇓ o

[Pretty1]
minus(t1, t2) ⇓ o

t2 ⇓ o2 minus2(n1, o2) ⇓ o
[Pretty2]

minus1(n1, t2) ⇓ o
n1 ≥ n2 n = n1 − n2 [Pretty3]

minus2(n1, n2) ⇓ n
n1 < n2 [Pretty4]

minus2(n1, n2) ⇓ exc(0)

abort(o1)
[Pretty5]

minus1(o1, t2) ⇓ o1
abort(o2)

[Pretty6]
minus2(n1, o2) ⇓ o2

[Abort]
abort(exc(n))

Small-step SOS 〈t, a〉 → 〈t′, a′〉
t ::= minus(t, t) | n n ∈ N a ::= τ | exc(n)

〈t1, τ〉 → 〈t′1, a′〉
[Small1]

〈minus(t1, t2), τ〉 → 〈minus(t′1, t2), a′〉
〈t2, τ〉 → 〈t′2, a′〉

[Small2]
〈minus(n1, t2), τ〉 → 〈minus(n1, t

′
2), a

′〉
n1 ≥ n2 n = n1 − n2 [Small3]
〈minus(n1, n2), τ〉 → 〈n, τ〉

n1 < n2 [Small4]
〈minus(n1, n2), τ〉 → 〈0, exc(0)〉

Table 1. Comparison of big-step, pretty-big-step, and small-step SOS rules for partially
defined subtraction of natural numbers (N).

Table 1 illustrates the difference between big-step, pretty-big-step, and small-
step SOS rules for subtracting natural numbers. In the small-step SOS rules we

Deriving Pretty-Big-Step Semantics from Small-Step Semantics 3

use a state variable a to propagate exceptions. By matching on the exception
state, rather than explicit exception terms, we can abruptly terminate as soon as
an exception state is entered.

As the table illustrates, pretty-big-step rules eliminate the duplicate premise
evaluating t1 to n1 in the big-step rules. However, both the big-step and pretty-
big-step rules are less concise than their small-step counterparts – even more
so if we generate small-step congruence rules, i.e., rules which perform a single
contraction in the context of a term, such as [Small1] and [Small2], from strictness
annotations, as used in the K-framework (Ros,u and S, erbănut,ă 2010).

We could ask ourselves: does (pretty-)big-step reasoning always come at the
cost of less concise specifications? In this paper we answer this question in the
negative. We show how we can have our cake and eat it by writing concise
specifications in small-step style and automatically deriving their pretty-big-step
counterparts. This allows us to do both small-step and big-step reasoning based
on the same semantics. Our derivation differs in two ways from Charguéraud’s
manual transformation:

1. rather than transforming big-step rules into pretty-big-step rules, we trans-
form small-step rules into pretty-big-step rules; and

2. our transformation is fully mechanical and has been automated.

Our pretty-big-step rules are derived by refocusing (Danvy and Nielsen 2004),
which allows us to go from reduction-based (small-step) to reduction-free (big-
step) evaluation (Danvy 2008b). We have previously adapted the techniques
of Danvy and Nielsen to Modular SOS (MSOS) to generate efficient prototype
interpreters (Bach Poulsen and Mosses 2014). Here, we extend and combine that
with research in pretty-big-step semantics and modular semantics specification to
make the following contributions to semantics engineering and its applications:

– We compare the effort required to extend a language with exceptions for
big-step, pretty-big-step, and (modular) small-step semantics (Sect. 2). Our
conclusion is that small-step MSOS specifications are more concise than corre-
sponding pretty-big-step (SOS) and big-step (SOS and MSOS) specifications.

– We demonstrate that pretty-big-step semantics is within the range of refocus-
ing by extending the diagram from (Danvy 2008a, p. 131) by the highlighted
box and arrows1:

small-step MSOS pretty-big-step
MSOS

big-step MSOS

reduction
semantics

small-step
abstract machine

big-step abstract
machine

1 Danvy (2008a) gave arrows for SOS rather than MSOS. The extension to MSOS follows
from the correspondence between SOS and MSOS (Mosses 2004, Proposition 3 and 4).

4 C. Bach Poulsen and P. D. Mosses

By unfolding a refocused small-step semantics as described in Sect. 3 we
derive pretty-big-step rules with fewer intermediate terms than Charguéraud’s
original formulation and which do not require auxiliary predicates.

– We adapt strictness annotations to MSOS (Sect. 4). By comparing the number
of rules and premises required to specify an example language involving a
considerable number of language features, we conclude that small-step MSOS
with strictness annotations can be significantly more concise than the pretty-
big-step style.

We claim that refocusing small-step MSOS specifications with strictness anno-
tations gives the best of both the small-step and the big-step worlds: a concise
specification format from which somewhat less concise pretty-big-step rules,
amenable to the big-step proof techniques pioneered by Charguéraud (2013) and
Leroy and Grall (2009), can be mechanically derived.

2 The Language and Its Semantics

We recall and contrast big-step semantics, pretty-big-step semantics, and small-
step SOS and MSOS, and illustrate that small-step semantics is more concise
than big-step semantics. Following Charguéraud (2013) and Leroy and Grall
(2009), the language here considered is the call-by-value λ-calculus extended with
constants. We consider the problem of extending this language with exceptions.

2.1 Big-Step Semantics

We give an environment-based semantics for the big-step semantics of the call-by-
value λ-calculus based on closures2. Judgments take the form ρ ` t⇒ v, asserting
that, under environment ρ, t evaluates to v. Environments ρ : Var → Val map
variables to values, and N are the natural numbers.

Val 3 v ::= n | clo(x, t, ρ) n ∈ N x ∈ Var

[B1]
ρ ` v ⇒ v

ρ(x) = v
[B2]

ρ ` var(x)⇒ v
[B3]

ρ ` abs(x, t)⇒ clo(x, t, ρ)

ρ ` t1 ⇒ clo(x, t, ρ′) ρ ` t2 ⇒ v ρ′[x 7→ v] ` t⇒ v′
[B4]

ρ ` app(t1, t2)⇒ v′

Following Charguéraud (2013), we introduce an exception term for abruptly
terminating evaluation. Under this extension, our judgment becomes ρ ` t⇒ b
and now asserts that, under environment ρ, t results in the behaviour b. The
grammar and rules immediately above are extended by:

Behaviour 3 b ::= v | exc(v)
2 By using closures we avoid the need to specify substitution.

Deriving Pretty-Big-Step Semantics from Small-Step Semantics 5

ρ ` t1 ⇒ exc(v′)
[B5]

ρ ` app(t1, t2)⇒ exc(v′)
ρ ` t1 ⇒ clo(x, t, ρ′) ρ ` t2 ⇒ exc(v′)

[B6]
ρ ` app(t1, t2)⇒ exc(v′)

ρ ` t1 ⇒ clo(x, t, ρ′) ρ ` t2 ⇒ v ρ′[x 7→ v] ` t⇒ exc(v′)
[B7]

ρ ` app(t1, t2)⇒ exc(v′)

In order to propagate the exception, the premise evaluating t1 to a closure
clo(x, t, ρ′) becomes duplicated between the rules [B4], [B6], and [B7], the premise
evaluating t2 to a value v is duplicated between [B4] and [B7], and the number of
rules defining the application construct grows from one ([B3]) to four ([B3]–[B7]).
This is the duplication problem with abrupt termination in big-step semantics.

As illustrated by Charguéraud (2013) and Leroy and Grall (2009), a similar
duplication problem arises if we express divergence following Cousot and Cousot
(1992), e.g., by introducing a ‘divergence relation’ coinductively defined by rules
similar to [B4]–[B7] above. Coinductive big-step semantics (Leroy and Grall
2009) avoids the duplication problem with divergence in big-step semantics by
giving a dual (inductive and coinductive) interpretation of the same set of rules.
Coinductive big-step semantics does not, however, offer any obvious solutions
to the duplication problem with abrupt termination. Pretty-big-step semantics
does.

2.2 Pretty-Big-Step Semantics

Charguéraud defines pretty-big-step rules as “rules that consider the evaluation
of at most one subterm at a time” and are syntax-directed (Charguéraud 2013,
Sect. 2.1), i.e., the initial term (conclusion source) for each rule is syntactically
distinct. Using pretty-big-step rules, duplicate premises are eliminated:

Outcome 3 o ::= b | div Intermediate 3 e ::= t | app1(o, t) | app2(v, o)

[P1]
ρ ` v ⇓ v

ρ(x) = v
[P2]

ρ ` var(x) ⇓ v
[P3]

ρ ` abs(x, t) ⇓ clo(x, t, ρ)

ρ ` t1 ⇓ o1 ρ ` app1(o1, t2) ⇓ o
[P4]

ρ ` app(t1, t2) ⇓ o
ρ ` t2 ⇓ o2 ρ ` app2(v1, o2) ⇓ o

[P5]
ρ ` app1(v1, t2) ⇓ o

ρ′[x 7→ v] ` t ⇓ o
[P6]

ρ ` app2(clo(x, t, ρ′), v) ⇓ o
abort(o)

[P7]
ρ ` app1(o, t2) ⇓ o

abort(o)
[P8]

ρ ` app2(v, o) ⇓ o
[Abort-Exc]

abort(exc(v))

[Abort-Div]
abort(div)

Here, e denotes intermediate terms. Like coinductive big-step semantics, each
pretty-big-step rule has a dual interpretation: inductive and coinductive. Thus,
the judgment ρ ` e ⇓ o asserts that, under environment ρ, t either terminates
with, or coevaluates to, an outcome o. An outcome is either a behaviour b (e.g.,

6 C. Bach Poulsen and P. D. Mosses

an exception or a value), or div, the term representing divergence which is only
derivable under a coinductive interpretation. The abort(o) auxiliary predicate
allows abrupt termination or divergence to be propagated in a generic way.

While pretty-big-step rules eliminate duplicate premises, they also introduce
additional terms in the grammar of the language (app1(o, t) and app2(v, o)), an
auxiliary predicate (abort(o)), and the number of rules compared to big-step
semantics has increased from seven to eight.

2.3 Small-Step SOS

We now compare big-step and pretty-big-step semantics to small-step SOS.
Consider the following small-step SOS rules for the call-by-value λ-calculus
without exceptions:

ρ(x) = v
[S1]

ρ ` var(x)→ v
[S2]

ρ ` abs(x, t)→ clo(x, t, ρ)

ρ ` t1 → t′1 [S3]
ρ ` app(t1, t2)→ app(t′1, t2)

ρ ` t2 → t′2 [S4]
ρ ` app(v1, t2)→ app(v1, t′2)

ρ′[x 7→ v] ` t→ t′
[S5]

ρ ` app(clo(x, t, ρ′), v)→ app(clo(x, t′, ρ′), v)
[S6]

ρ ` app(clo(x, v′, ρ′), v)→ v′

The small-step judgment ρ ` t→ t′ asserts that, under environment ρ, t makes
a transition to t′, which need not be a value. This formulation uses two more
rules than the big-step style specification before adding exceptions (Sect. 2.1).
This is in part due to the two congruence rules [S3] and [S4] which propagate the
result of doing a contraction inside a subterm. Section 4.3 shows how these can
be replaced by a strictness annotation.

Following Plotkin (2004), evaluation in a small-step SOS is given by (possibly
infinite) sequences of transition steps in an underlying labelled terminal transition
system (LTTS). The LTTS for the SOS with the rules [S1]–[S6] above is given by
〈Term,1,→,Val〉, where → ⊆ Term × 1× Term is the transition relation that
our rules inductively define, and 1 denotes the singleton set containing a unit
label that is implicitly present on all transitions. Divergence in small-step SOS
corresponds to an infinite sequence of transition steps in the underlying LTTS.

To extend our small-step semantics with exceptions, we could follow Char-
guéraud (2013) in introducing an exception term. This would require us to
introduce rules propagating exceptions similarly to the pretty-big-step rules. An
alternative, following Mosses (2004), is to model exceptions as signals in the label
of the transition relation. In this approach, a top-level term abruptly terminates
evaluation if an exception signal is propagated to the top-level. Here, we take
a different approach and model exceptions as states in the configurations of
the underlying LTTS. Updating our relation, the judgment ρ ` 〈t, a〉 → 〈t′, a′〉
asserts that, under environment ρ, the configuration 〈t, a〉 makes a transition to
〈t′, a′〉, where a ::= τ | exc(v). Our small-step rules are updated to propagate the

Deriving Pretty-Big-Step Semantics from Small-Step Semantics 7

exception state:

ρ(x) = v
[S1′]

ρ ` 〈var(x), τ〉 → 〈v, τ〉
[S2′]

ρ ` 〈abs(x, t), τ〉 → 〈clo(x, t, ρ), τ〉

ρ ` 〈t1, τ〉 → 〈t′1, a′〉
[S3′]

ρ ` 〈app(t1, t2), τ〉 → 〈app(t′1, t2), a′〉
ρ ` 〈t2, τ〉 → 〈t′2, a′〉

[S4′]
ρ ` 〈app(v1, t2), τ〉 → 〈app(v1, t′2), a′〉

ρ′[x 7→ v] ` 〈t, τ〉 → 〈t′, a′〉
[S5′]

ρ ` 〈app(clo(x, t, ρ′), v), τ〉 → 〈app(clo(x, t′, ρ′), v), a′〉

[S6′]
ρ ` 〈app(clo(x, v′, ρ′), v), τ〉 → 〈v′, τ〉

Here, τ indicates that no exception is being thrown. By matching on the exception
state for each transition at the top-level of our LTTS, we can decide whether
evaluation should continue (in case of a τ state), or whether to terminate (in
case of an exception).

2.4 Small-Step Modular SOS

Unlike pretty-big-step semantics, introducing abrupt termination in the small-
step SOS in previous subsection did not increase the number of rules. Unlike
big-step semantics, nor did introducing abrupt termination result in duplication
of premises. To introduce the exception state, we did, however, reformulate all of
our rules. If we use MSOS instead of ordinary SOS, we do not need to update our
rules at all. The MSOS rules corresponding to the small-step SOS rules [S1]–[S6]
in the previous subsection are:

ρ(x) = v
[M1]

var(x)
{env=ρ,−−}−−−−−−−−→ v

[M2]

abs(x, t)
{env=ρ,−−}−−−−−−−−→ clo(x, t, ρ)

t1
`−→ t′1 [M3]

app(t1, t2)
`−→ app(t′1, t2)

t2
`−→ t′2 [M4]

app(v1, t2)
`−→ app(v1, t′2)

t
{env=ρ′[x 7→v],...}−−−−−−−−−−−−→ t′ [M5]

app(clo(x, t, ρ′), v)
{env=ρ,...}−−−−−−−→ app(clo(x, t′, ρ′), v)

[M6]

app(clo(x, v′, ρ′), v)
{−−}−−→ v′

The judgment t `−→ t′ asserts that, under label `, t reduces to t′. Labels in MSOS
are comprised of label components, such as env = ρ in the rules above, and
are denoted using Standard ML syntax for record patterns (Milner et al. 1997).
Whereas SOS requires auxiliary entities to be explicitly propagated, even for
rules that don’t explicitly use them, MSOS uses label variables to refer to label
components that are not explicitly needed. In the rules above, ‘. . .’ is an example
of such a variable. The ‘−−’ in the rules above is a variable with a special meaning
in MSOS: it says that no side-effects occur in the step. For example, if ‘−−’ refers
to, say, a pair of read-write store label components 〈sto=σ, sto′=σ′〉, where

8 C. Bach Poulsen and P. D. Mosses

sto=σ is the store before the transition, and sto′=σ′ is the store resulting from
making the transition, the ‘−−’ variable requires that the state is not updated,
i.e., that σ = σ′.

While side-effects (or lack hereof) on auxiliary entities in SOS are explicitly
propagated, side-effects in MSOS are propagated by label composition. Formally,
a label is a morphism in a product category, the members of the product being
the label components. Propagating side-effects between transitions corresponds
to composition in the product category. ‘No side-effects’ (or unobservability)
is represented by identity morphisms. Recalling that composition in a product
category corresponds to taking the product of compositions for each of the
corresponding individual members of the product (Pierce 1991), composing two
labels corresponds to propagating the side-effects for each of the underlying label
components. We briefly recall the basic label component categories for MSOS
and their composition principles:
Read-only: modelled by a discrete category where objects only have identity

morphisms. This corresponds to environments which may be inspected but
not changed. Composition principle for read-only entities ro: ro ◦ ro = ro.

Read-write: modelled by a preorder category where morphisms between objects
constitute a preorder. Corresponds to stores which may be inspected and
changed by a transition. Each morphism is a pair; e.g., 〈rw, rw′〉. Composition
principle for read-write entities 〈rw, rw′〉: 〈rw′, rw′′〉 ◦ 〈rw, rw′〉 = 〈rw, rw′′〉.

Write-only: modelled by a free monoid considered as a category with a single
object. The morphisms are (possibly empty) sequences of observable actions
and signals. One of the identity arrows corresponds to the unobservable action
τ (the empty sequence); all others represent observable sequences of actions.
Composition principle for write-only entities wo′: wo′2 ◦ wo′1 = wo′1 • wo′2
where • is the composition operator in the monoid

By convention, readable label components are labelled by unprimed indices, such
as env, and writable label components are labelled by primed indices, such
as sto′. For example, for the two labels `1 = {env= ρ, sto= σ, sto′ = σ} and
`2 = {env=ρ, sto=σ, sto′=σ′}, their composition `2 ◦ `1 is given by the label
{env=ρ, sto=σ, sto′=σ′}.

Following Mosses (2004), evaluation in MSOS corresponds to (possibly infinite)
sequences of transition steps in an underlying generalized transition system. The
generalized transition system for the MSOS given by rules [M1]–[M6] above is
a tuple 〈Term,L,→,Val〉, where L is a product category consisting of a single
discrete category, corresponding to the read-only label component env=ρ.

In a similar style to Leroy and Grall (2009), the iteration of this GTS can be
expressed by a relation −→∗ for which judgments take the form t

`−→∗ v, asserting
that term t evaluates to value v under label `. −→∗ is defined by the rules:

[MRefl]

v
{−−}−−−→∗ v

t
`1−→ t′ t′

`2−→∗ v [MTrans]

t
`2◦`1−−−→∗ v

To extend our semantics with exceptions, we extend the product category L
by a new read-write label component 〈exc=a, exc′=a′〉, where a ::= τ | exc(v).

Deriving Pretty-Big-Step Semantics from Small-Step Semantics 9

There are several ways of inhibiting further evaluation after an exception state
is entered in MSOS. One is to follow the approach taken in our SOS rules and
explicitly modify our rules such that each transition only matches when exc=τ .
Another way, which does not require the modification of our transition rules, is to
update the evaluation rules [MRefl] and [MTrans] as we illustrate in Sect. 3.1.

Variant (exceptions) Rules Premises Modifications

Big-step terms 7 ([B1]–[B7]) 10 3
states 6 7 3

Pretty-big-step terms 8 ([P1]–[P8]) 8 2
states 8 8 2

Small-step SOS terms 8 4 2
states 6 ([S1′]–[S6′]) 4 6

Small-step MSOS terms 8 4 2
states 6 ([M1]–[M6]) 4 0

Table 2. Required number of rules, premises, and rule modifications in order to
express abrupt termination. Rule modifications are counted by comparing with the
corresponding semantics without abrupt termination, where we count each reformulated
existing rule and each introduction of a new rule for previously defined constructs.

Table 2 summarizes the effort required to specify and update our semantics.
From this, we can see that SOS with exception labels requires fewer rules and
premises to handle abrupt termination than big-step and pretty-big-step rules.
This is in part due to the fact that we followed Charguéraud (2013) in using
explicit exception terms rather than exception states. By refocusing our small-step
MSOS rules in Sect. 3.2, we demonstrate how to derive more concise pretty-big-
step rules based on small-step MSOS. Deriving pretty-big-step MSOS rules in
this fashion also reduces the need for intermediate terms and auxiliary predicates.

3 From Small-Step to Pretty-Big-Step Modular SOS

After introducing some preliminary requirements, we show how to derive pretty-
big-step rules from small-step rules by refocusing.

3.1 Preliminaries

To ensure the correctness of our derivation, we require that:

1. the small-step MSOS is syntax-directed; and
2. exception states are explicitly recognizable at the top-level of the semantics.

10 C. Bach Poulsen and P. D. Mosses

The first requirement ensures that derived pretty-big-step rules are syntax-
directed. The second ensures that abrupt termination is propagated correctly in
derived pretty-big-step rules.

Syntax-directed evaluation. Following Charguéraud (2013), rules are syntax-
directed if the initial configuration (i.e., the conclusion source term) of each rule
is distinct from all other rules. In MSOS rules, an initial configuration consist of
the initial (conclusion source) term together with the readable label components
in the conclusion. The small-step MSOS rules from the previous section are
not syntax-directed: e.g., for some value v and term t, app(v, t) matches the
conclusions of both [M3] and [M4]. Rather than introducing intermediate terms,
like in Sect. 2.2, we modify the abstract syntax to distinguish terms and values:

Val 3 v ::= n | clo(x, e, ρ) n ∈ N x ∈ Var

Term 3 t ::= var(x) | app(e, e) | abs(x, e)

Expr 3 e ::= term(t) | val(v)

Using this abstract syntax, values are no longer instances of terms. However,
terms and values are both instances of expressions in Expr . To avoid the tedium
of writing out the constructor names term and val each time we need them, we
will leave them implicit, like Charguéraud (2013), and simply write t instead of
term(t), and v instead of val(v). We revise our relations and rules from Sect. 2.4
to reflect the updated abstract syntax:

[ERefl]

v
{−−}−−−→∗ v

t
`1−→ e e

`2−→∗ v [ETrans]

t
`2◦`1−−−→∗ v

e
`−→∗ e t

`−→ e

ρ(x) = v
[E1]

var(x)
{env=ρ,−−}−−−−−−−−→ v

[E2]

abs(x, e)
{env=ρ,−−}−−−−−−−−→ clo(x, e, ρ)

t1
`−→ e1 [E3]

app(t1, e2)
`−→ app(e1, e2)

t2
`−→ e2 [E4]

app(v1, t2)
`−→ app(v1, e2)

t
{env=ρ′[x 7→v],...}−−−−−−−−−−−−→ e [E5]

app(clo(x, t, ρ′), v)
{env=ρ,...}−−−−−−−→ app(clo(x, e, ρ′), v)

[E6]

app(clo(x, v′, ρ′), v)
{−−}−−→ v′

These rules are syntax-directed: app(v, t) only matches the conclusion of [E4].

Exception state recognition. Consider the extension of our language by a
throw(v) construct for throwing exceptions:

t ::= ... | throw(v) v ::= ... | unit

[E7]

throw(v)
{exc=τ,exc′=exc(v),−−}−−−−−−−−−−−−−−−−→ unit

Deriving Pretty-Big-Step Semantics from Small-Step Semantics 11

We expect evaluation of the term app(abs(x, var(x)), throw(42)) to abruptly termi-
nate after reducing throw(42). However, using [ETrans] as defined above, this is
not what happens. First, abs(x, var(x)) is evaluated to the closure clo(x, var(x), ∅),
where ∅ is the empty environment. The next step throws the exception, giv-
ing the subject term app(clo(x, var(x), ∅), unit) and label {exc = τ, exc′ =
exc(42), . . .}. Rather than abruptly terminate at this point, the exception is
forward propagated by label composition, whereafter evaluation of the subject
term app(clo(x, unit, ∅), unit) and label {exc = exc(42), exc′ = a, . . .} continues.
We update our evaluation rules to terminate when exc=exc(v):

a ::= τ | exc(v)

t
{exc=τ,exc′=a,X1}−−−−−−−−−−−−−→ e e

`2−→∗ e′ [Trans]

t
`2◦{exc=τ,exc′=a,X1}−−−−−−−−−−−−−−−→∗ e′

[Exc]

e
{exc=exc(v),exc′=exc(v),−−}−−−−−−−−−−−−−−−−−−−→∗ e

By the definition of label composition, the conclusion of the first rule only matches
transitions with exc=τ , since the result of composing an arbitrary label with
{exc= τ, exc′ = a,X1} is a label with exc= τ . The initial configurations for
[Trans] and [Exc] are distinct and hence syntax-directed.

Evaluating the subject term app(clo(x, var(x), ∅), throw(42)) under [Trans]
and [Exc] changes the exception state from τ to exc(42), after which only
[Exc] matches the rule. Evaluation therefore abruptly terminates with label
{exc=τ, exc′=exc(42), . . .} and term app(clo(x, var(x), ∅), unit).

It is equally straightforward to extend our language with a catch construct
for catching and handling exceptions. We give a syntax-directed definition by
introducing an eq(e, e) construct for checking syntactic equality for values and
an if(e, e, e) construct for checking the outcome of the exc′ label component:

t ::= ... | if(e, e, e) | eq(e, e) | catch(e, e) v ::= ... | true | false | a

t
`−→ e [E8]

if(t, e1, e2)
`−→ if(e, e1, e2)

[E9]

if(true, e1, e2)
{−−}−−−→ e1

[E10]

if(false, e1, e2)
{−−}−−−→ e2

t1
`−→ e1 [E11]

eq(t1, e2)
`−→ eq(e1, e2)

t2
`−→ e2 [E12]

eq(v1, t2)
`−→ eq(v1, e2)

v1 = v2 [E13]

eq(v1, v2)
{−−}−−−→ true

v1 6= v2 [E14]

eq(v1, v2)
{−−}−−−→ false

[E15]

catch(v1, e2)
{−−}−−−→ v1

t1
{exc=τ,exc′=a,X}−−−−−−−−−−−−→ e1 [E16]

catch(t1, e2)
{exc=τ,exc′=τ,X}−−−−−−−−−−−−→ if(eq(a, τ), catch(e1, e2), app(e2, a))

The resulting semantics is syntax-directed and explicitly recognizes abrupt termi-
nation at the top-level.

12 C. Bach Poulsen and P. D. Mosses

3.2 Deriving Pretty-Big-Step Rules by Refocusing

Following our previous work (Bach Poulsen and Mosses 2014), refocusing a small-
step MSOS involves extending the MSOS evaluation rules from previous section
by a refocusing rule. Renaming [ERefl] to [Refl], the evaluation rules extended
by the [Refocus] rule are:

[Refl]

v
{−−}−−−→∗ v

t
{exc=τ,exc′=a,X1}−−−−−−−−−−−−−→ e e

`2−→∗ e′ [Trans]

t
`2◦{exc=τ,exc′=a,X1}−−−−−−−−−−−−−−−→∗ e′

[Exc]

e
{exc=exc(v),exc′=exc(v),−−}−−−−−−−−−−−−−−−−−−−→∗ e

t
`−→∗ e [Refocus]

t
`−→ e

Introducing the [Refocus] rule allows evaluation to occur inside derivation trees,
as opposed to always at the top-level. However, it also breaks syntax-direction:
the initial configuration of [Refocus] matches that of every other transition rule.
To get the effect of refocusing while preserving syntax-direction, we unfold the
refocusing rule and replace our transition rules by the derived rules corresponding
to the partial derivation for each transition rule [r]:

P1 · · · Pn [r]

t
{exc=τ,exc′=a,X1}−−−−−−−−−−−−−→ e e

`2−→∗ e′ [Trans]

t
`2◦{exc=τ,exc′=a,X1}−−−−−−−−−−−−−−−→∗ e′ [Refocus]

t
`2◦{exc=τ,exc′=a,X1}−−−−−−−−−−−−−−−→ e′

∼ P1 · · · Pn e
`2−→∗ e′

t
`2◦{exc=τ,exc′=a,X1}−−−−−−−−−−−−−−−→ e′

Noticing that we have to propagate the label components exc=τ, exc′=a many
times, we introduce the notation ‖X‖ for abbreviating {exc=τ , exc′=a,X}.

Returning to our running example, refocusing the [E3] rule from Sect. 3.1
Gives the following partial derivation and derived (refocused) rule [ER3]:

t1
‖X1‖−−−→ e1 [E3]

app(t1, e2)
‖X1‖−−−→ app(e1, e2) app(e1, e2)

`2−→∗ e′
[Trans]

app(t1, e2)
`2◦‖X1‖−−−−−→∗ e′

[Refocus]

app(t1, e2)
`2◦‖X1‖−−−−−→ e′

∼ t1
‖X1‖−−−→ e1 app(e1, e2)

`2−→∗ e′
[ER3]

app(t1, e2)
`2◦‖X1‖−−−−−→ e′

Deriving Pretty-Big-Step Semantics from Small-Step Semantics 13

The refocused rules corresponding to [E1]–[E7] are:

ρ(x) = v
[ER1]

var(x)
‖env=ρ,−−‖−−−−−−−−→ v

[ER2]

abs(x, e)
‖env=ρ,−−‖−−−−−−−−→ clo(x, e, ρ)

t1
‖X1‖−−−→ e1 app(e1, e2)

`2−→∗ e′
[ER3]

app(t1, e2)
`2◦‖X1‖−−−−−→ e′

t2
‖X1‖−−−→ e2 app(v1, e2)

`2−→∗ e′
[ER4]

app(v1, t2)
`2◦‖X1‖−−−−−→ e′

t
‖env=ρ′[x7→v],X1‖−−−−−−−−−−−−→ e app(clo(x, e, ρ′), v) `2−→∗ e′

[ER5]

app(clo(x, t, ρ′), v)
`2◦‖env=ρ,X1‖−−−−−−−−−−→ e′

[ER6]

app(clo(x, v′, ρ′), v)
‖−−‖−−→ v′

[ER7]

throw(v)
{exc=τ,exc′=exc(v),−−}−−−−−−−−−−−−−−−−→ unit

Our refocused rules are very closely related to pretty-big-step rules. Like pretty-
big-step rules, each refocused rule:

– relates a term to a value or an exception state;
– reduces a single subterm at a time; and
– is syntax-directed.

A significant difference is that our refocused rules mutually define both −→∗ and
→. However, we can observe that each ordinary transition step (→) either maps
a term to an exception state, or maps a term to a value. From this, it follows
that the top-level application of [Trans] has the form:

t
‖X1‖−−−→ e

[R]

e
`2−→∗ e′ [Trans]

t
`2◦‖X1‖−−−−−→∗ e′

Either e is going to be a value v, in which case [R]=[Refl]. Otherwise, for the
label `2 = {exc = a, exc′ = a′, . . .} it is the case that a 6= τ , whereby [R]=[Exc].
Therefore, in a semantics with refocused rules, all applications of [Trans] match
the derived rule:

t
‖X‖−−−→ e [TTrans]

t
‖X‖−−−→∗ e

By applications of [Refocus] and [TTrans], each occurrence of an ordinary
step (→) can be replaced by a transitive step (−→∗). Replacing ordinary steps
gives the MSOS pretty-big-step rules in Table 3. These rules describe the same
language as the pretty-big-step rules given in (Charguéraud 2013, Fig. 2). In
contrast to Charguéraud’s pretty-big-step semantics, we have not introduced any
intermediate terms or auxiliary predicates.

The correctness of the derivations presented in this section have been tested
by using the MSOS Derivation Tool (Bach Poulsen and Mosses 2014) to generate
and compare executable interpreters for the small-step semantics, its refocused,
and its pretty-big-step counterpart. The generated interpreters and test suite are
available online3. Sections 5 and 6 suggest future directions for a more formal
treatment of correctness.
3 www.plancomps.org/bachpoulsen2014a

http://www.plancomps.org/bachpoulsen2014a

14 C. Bach Poulsen and P. D. Mosses

[EPRefl]

v
{−−}−−−→∗ v

[EPExc]

e
{exc=exc(v),exc′=exc(v),−−}−−−−−−−−−−−−−−−−−−−→∗ e

ρ(x) = v
[EP1]

var(x)
‖env=ρ,−−‖−−−−−−−−→∗ v

[EP2]

abs(x, e)
‖env=ρ,−−‖−−−−−−−−→∗ clo(x, e, ρ)

t1
‖X1‖−−−→∗ e1 app(e1, e2)

`2−→∗ e′
[EP3]

app(t1, e2)
`2◦‖X1‖−−−−−→∗ e′

t2
‖X1‖−−−→∗ e2 app(v1, e2)

`2−→∗ e′x
[EP4]

app(v1, t2)
`2◦‖X1‖−−−−−→∗ e′

t
‖env=ρ′[x 7→v],X1‖−−−−−−−−−−−−→∗ e app(clo(x, e, ρ′), v) `2−→∗ e′

[EP5]

app(clo(x, t, ρ′), v)
`2◦‖env=ρ,X1‖−−−−−−−−−−→∗ e′

[EP6]

app(clo(x, v′, ρ′), v)
‖−−‖−−→∗ v′

[EP7]

throw(v)
{exc=τ,exc′=exc(v),−−}−−−−−−−−−−−−−−−−→∗ unit

t
‖X1‖−−−→∗ e if(e, e1, e2)

`2−→∗ e′
[EP8]

if(t, e1, e2)
`2◦‖X1‖−−−−−→∗ e′

e1
`−→∗ e′

[EP9]
if(true, e1, e2)

`−→∗ e′

e2
`−→∗ e′

[EP10]
if(false, e1, e2)

`−→∗ e′
t1
‖X1‖−−−→∗ e1 eq(e1, e2)

`2−→∗ e′
[EP11]

eq(t1, e2)
`2◦‖X1‖−−−−−→∗ e′

t2
‖X1‖−−−→∗ e2 eq(v1, e2)

`2−→∗ e′
[EP12]

eq(v1, t2)
`2◦‖X1‖−−−−−→∗ e′

v1 = v2 [EP13]

eq(v1, v2)
{−−}−−−→∗ true

v1 6= v2
[EP14]

eq(v1, v2)
{−−}−−−→∗ false

[EP15]

catch(v1, e2)
{−−}−−−→∗ v1

t1
‖exc=τ,exc′=a,X1‖−−−−−−−−−−−−−→∗ e1 if(eq(a, τ), catch(e1, e2), app(e2, a))

`2−→∗ e′
[EP16]

catch(t1, e2)
`2◦‖exc=τ,exc′=τ,X1‖−−−−−−−−−−−−−−−→ e′

Table 3. Derived pretty-big-step rules for [E1]–[E16].

4 Scaling Up to Real Languages

Our running example in this paper has been the λ-calculus with exceptions. This
section illustrates how the derivation in Sect. 3.2 scales up to other language
features.

4.1 Side-Effects

We have already shown how to derive pretty-big-step rules for semantics with
exceptions. Other kinds of abrupt termination can be handled in a similar way.
Small-step MSOS rules with output channels (such as printing) and mutable

Deriving Pretty-Big-Step Semantics from Small-Step Semantics 15

storage impose no additional constraints when deriving pretty-big-step rules by
refocusing. To demonstrate, we extend our language with printing and ML-style
references. To handle these features, we introduce two new label components: a
read-write label component 〈sto=σ, sto′=σ〉, where σ : Loc → Val are stores
mapping locations (such as memory addresses) to values; and a write-only label
component out′=[v] containing a (possibly empty) list of printed values. The
extended language is:

t ::= ... | print(e) | ref(e) | deref(e) | assign(e, e) v ::= ... | l l ∈ Loc

t
`−→ e [E17]

print(t) `−→ print(e)
[E18]

print(v)
{out′=[v],−−}−−−−−−−−−→ unit

t
`−→ e [E19]

ref(t) `−→ ref(e)

l 6∈ dom(σ)
[E20]

ref(v)
{sto=σ,sto′=σ[l 7→v],−−}−−−−−−−−−−−−−−−−→ l

t
`−→ e [E21]

deref(t) `−→ deref(e)

σ(l) = v
[E22]

deref(l)
{sto=σ,sto′=σ,−−}−−−−−−−−−−−−→ v

t1
`−→ e1 [E23]

assign(t1, e2)
`−→ assign(e1, e2)

t2
`−→ e2 [E24]

assign(l, t2)
`−→ assign(l, e2)

[E25]

assign(l, v)
{sto=σ,sto′=σ[l 7→v],−−}−−−−−−−−−−−−−−−−→ v

No modification of our evaluation rules is necessary. These syntax-directed
rules are straightforwardly refocused and unfolded into pretty-big-step rules as
described in Sect. 3.2.

4.2 C-Style for-Loops

Following Charguéraud (2013), we illustrate how to express a C-style for-loop
construct. We recall Charguéraud’s pretty-big-step rules, and compare with
a corresponding small-step formulation and its derived pretty-big-step MSOS
counterpart.

A C-style for-loop, for(e1, e2, e3), continually evaluates body e3 of a loop,
until the condition e1 no longer holds. Between each iteration of the for-loop,
incrementer e2 is evaluated. Charguéraud gives pretty-big-step rules that reflect
this as follows:

t ::= for(e, e, e) | v Intermediate 3 e ::= t | for(i, o, t, t, t) i ∈ {1, 2, 3}

b ::= v | exc(v) o ::= 〈b, σ〉 | div

16 C. Bach Poulsen and P. D. Mosses

〈t1, σ〉 ⇓ o1 〈for(1, o1, t1, t2, t3), σ〉 ⇓ o
〈for(t1, t2, t3), σ〉 ⇓ o 〈for(1, 〈false, σ〉, t1, t2, t3), σ′〉 ⇓ 〈unit, σ〉

〈t3, σ〉 ⇓ o3 〈for(2, o3, t1, t2, t3), σ〉 ⇓ o
〈for(1, 〈true, σ〉, t1, t2, t3), σ′〉 ⇓ o

〈t2, σ〉 ⇓ o2 〈for(3, o2, t1, t2, t3), σ〉 ⇓ o
〈for(2, 〈unit, σ〉, t1, t2, t3), σ′〉 ⇓ o

〈for(t1, t2, t3), σ〉 ⇓ o
〈for(3, 〈unit, σ〉, t1, t2, t3), σ′〉 ⇓ o

abort(o)
〈for(i, o, t1, t2, t3), σ〉 ⇓ o

abort(exc(v))
In small-step MSOS, a corresponding specification of for-loops is in terms of
the conditional if(e, e, e) defined in Sect. 3.1 rules [E8]–[E10], and sequential
composition seq(e, e):

t ::= ... | seq(e, e) | for(e, e, e)

t1
`−→ e1 [E26]

seq(t1, e2)
`−→ seq(e1, e2)

[E27]

seq(v1, e2)
{−−}−−−→ e2

[E28]

for(e1, e2, e3)
{−−}−−−→ if(e1, seq(e3, seq(e2, for(e1, e2, e3))), unit)

Deriving the pretty-big-step MSOS rules gives:

t1
‖X1‖−−−→∗ e1 seq(e1, e2)

`2−→∗ e′
[EP26]

seq(t1, e2)
`−→∗ e′

e2
‖X1‖−−−→∗ e′

[EP27]

seq(v1, e2)
‖X1‖−−−→∗ e′

if(e1, seq(e3, seq(e2, for(e1, e2, e3))), unit)
‖X‖−−−→∗ e

[EP28]

for(e1, e2, e3)
‖X‖−−−→∗ e

These pretty-big-step rules correspond to Charguéraud’s rules. In fact, we can
derive Charguéraud’s pretty-big-step rules directly from these rules. Replacing
a rule by the derived rule(s) corresponding to all possible partial derivations
is trivially correct. We can compress transitions, similar to (Danvy 2008b), by
unfolding the rightmost ‘continuation’ premise in pretty-big-step rules. This cor-
responds to striding as described in (Bach Poulsen and Mosses 2014). Transition
compressing [EP28] once gives:

e1
‖X1‖−−−→∗ e′1 if(e′1, seq(e3, seq(e2, for(e1, e2, e3))), unit) `2−→∗ e

[EP28′]

for(e1, e2, e3)
`2◦‖X1‖−−−−−→∗ e

[EP29]

for(false, e2, e3)
{−−}−−−→∗ unit

seq(e3, seq(e2, for(e1, e2, e3)))
`−→∗ e

[EP30]

for(true, e2, e3)
`−→∗ e

If we continue doing this, we get a set of classic big-step rules. Decomposing the
derived big-step rules into pretty-big-step rules, as described by Charguéraud
(2013), we obtain a set of rules that coincides with the pretty-big-step semantics
for C-style for loops given in the beginning of this subsection.

Deriving Pretty-Big-Step Semantics from Small-Step Semantics 17

4.3 Strictness Annotations

Inspired by the K-framework (Ros,u and S, erbănut,ă 2010), we can use strict-
ness annotations to automatically generate congruence rules. For example, for
application in the λ-calculus:

t ::= ...
| app(e, e) [seq-strict]
| ...

The seq-strict annotation automatically generates congruence rules for evaluat-
ing each sub-term fully in left-to-right order. Recall the original rules defining
app(e, e):

t1
`−→ e1 [E3]

app(t1, e2)
`−→ app(e1, e2)

t2
`−→ e2 [E4]

app(v1, t2)
`−→ app(v1, e2)

t
{env=ρ′[x 7→v],...}−−−−−−−−−−−−→ e [E5]

app(clo(x, t, ρ′), v)
{env=ρ,...}−−−−−−−→ app(clo(x, e, ρ′), v)

[E6]

app(clo(x, v′, ρ′), v)
{−−}−−→ v′

We can omit [E3] and [E4], since these congruence rules correspond exactly to
the rules generated by seq-strict.

To generate congruence rules for subterm positions n1, n2, . . . numbered in
the order they should be evaluated, we use the annotation strict(n1 n2 . . .). E.g.,
if(e, e, e) can be specified as:

t ::= ...
| if(e, e, e) [strict(1)]
| ...

[E9]

if(true, e1, e2)
{−−}−−−→ e1

[E10]

if(false, e1, e2)
{−−}−−−→ e2

This annotation automatically generates rule [E8] from Sect. 3.1.

Variant
Explicit
rules Premises

Generated
rules

Generated
premises

Strictness-annotated small-
step MSOS

20 9 31 20

Small-step MSOS 31 20 31 20

Pretty-big-step MSOS 30 35 30 35

Table 4. Comparison of number of rules and premises for strictness annotated small-
step, ordinary small-step, and derived pretty-big-step MSOS.

Table 4 summarizes how the use of strictness annotations reduces the number
of explicitly specified rules by a third. As expected, small-step specifications are

18 C. Bach Poulsen and P. D. Mosses

more concise than their pretty-big-step counterparts. By deriving the pretty-big-
step rules automatically as described in this paper, we get the best of both worlds:
a concise small-step specification format, and derived pretty-big-step rules that
can be used for (pretty-)big-step reasoning.

5 Related Work

As illustrated throughout this paper, specifications in small-step MSOS require
less effort to specify than corresponding big-step and pretty-big-step specifications.
By automatic derivation, it is possible to apply both small-step and (pretty-)big-
step reasoning to the same semantics. Many other authors have considered the
relationship between small-step and big-step semantics.

Danvy et al. (2004; 2008a; 2008b) have explored this relationship by inter-
deriving functional programs implementing many different semantic styles by
provably correct transformations. Refocusing (Danvy and Nielsen 2004) was
originally formulated for reduction semantics (Felleisen and Hieb 1992), but
is also applicable to the K-framework, whose heating and cooling rules closely
resemble reduction contexts (Ros,u and S, erbănut,ă 2010).

Recently, Ciobâcă (2013) described a means of deriving big-step semantics
automatically from small-step semantics. His transformation essentially corre-
sponds to the derivation we describe here. Unlike this work, his transformation
does not describe the intermediate steps involved in the derivation, and is de-
fined for substitution-based small-step semantics, which are transformed into
substitution-based classic big-step rules. The correctness of Ciobâcă’s transforma-
tion is based on notions of star-soundness and star-completeness. Comparing with
Leroy and Grall’s proof method for relating small-step and big-step semantics,
these notions coincide with their proof method (Leroy and Grall 2009, Theorem
9)4. Star-soundness corresponds to the helper lemmas required for the “easy
induction” used by Leroy and Grall, which holds for semicompositional semantics
in the sense of Jones (2004). Similarly, star-completeness says that a big-step can
be decomposed into a small-step followed by a big-step on the resulting term,
corresponding to the second step of the “only if” part of Leroy and Grall’s proof.
The decomposition of a big-step into a small-step followed by a big-step is correct
when the semantics is either confluent or deterministic, which corresponds to the
unique decomposition requirement of refocusing in reduction semantics, and to
Ciobâcă’s requirement that the semantics is confluent.

We have taken a syntactic approach to deriving pretty-big-step semantics by
describing each of the intermediate steps involved in the derivation. To ensure
correct derivations, we required (Sect. 3.1) that:

1. the small-step semantics is syntax-directed; and
2. exception states are explicitly recognizable at the top-level of the semantics.

By insisting that our semantics is syntax-directed we avoid the issue of having to
prove unique decomposition, as is required for refocusing in reduction semantics
4 See also their Coq proofs: http://gallium.inria.fr/˜xleroy/coindsem/

http://gallium.inria.fr/~xleroy/coindsem/

Deriving Pretty-Big-Step Semantics from Small-Step Semantics 19

(Xiao et al. 2001). Syntax-direction implies determinism, which in turn implies
unique decomposition. Whereas Ciobâcă and Danvy and Nielsen prove their
transformations correct, we have so far relied on testing by generating executable
interpreters using the MSOS Derivation Tool (Bach Poulsen and Mosses 2014)
and comparing their outputs for example programs.

6 Conclusion and Future Directions

Small-step MSOS requires less effort than big-step and pretty-big-step rules to
specify. We have shown that pretty-big-step semantics is within the range of
refocusing, and that it is therefore possible to automatically derive pretty-big-step
rules. In our examples, the derived pretty-big-step rules do not require auxiliary
predicates, and are more concise than the pretty-big-step rules one would specify
manually.

Future work includes exploring whether all pretty-big-step semantics are
derivable by refocusing, and whether refocusing always yields a pretty-big-step
semantics. A first step towards answering these questions is to mechanically verify,
using, e.g., Coq, the correctness criteria for the derivation presented in Sect. 3.25.
Existing work by Leroy and Grall (2009), Ciobâcă (2013), and Sieczkowski et al.
(2011) are notable sources of reference for aiding such mechanization.

Acknowledgements. We would like to thank Martin Churchill, Paolo Torrini, and
the anonymous referees for their useful comments. This work was supported by
an EPSRC grant (EP/I032495/1) to Swansea University in connection with the
PLanCompS project (www.plancomps.org).

References

Bach Poulsen, C., Mosses, P.D.: Generating specialized interpreters for modular
structural operational semantics. In: LOPSTR’13. LNCS, Springer Berlin
Heidelberg (2014), to appear

Charguéraud, A.: Pretty-big-step semantics. In: Felleisen, M., Gardner, P. (eds.)
ESOP’13. LNCS, vol. 7792, pp. 41–60. Springer Berlin Heidelberg (2013)

Ciobâcă, S, .: From small-step semantics to big-step semantics, automatically. In:
Johnsen, E.B., Petre, L. (eds.) IFM’13. LNCS, vol. 7940, pp. 347–361. Springer
Berlin Heidelberg (2013)

Cousot, P., Cousot, R.: Inductive definitions, semantics and abstract interpreta-
tions. In: POPL’92. pp. 83–94. ACM (1992)

Danvy, O.: Defunctionalized interpreters for programming languages. In: Hook,
J., Thiemann, P. (eds.) ICFP’08. pp. 131–142. ACM (2008a)

Danvy, O.: From reduction-based to reduction-free normalization. In: Koopman,
P.W.M., Plasmeijer, R., Swierstra, S.D. (eds.) AFP’08. LNCS, vol. 5832, pp.
66–164. Springer Berlin Heidelberg (2008b)

5 Preliminary work on a Coq mechanization of the correctness proofs for the derivations
in Sect. 3 and 4 is available online: www.plancomps.org/bachpoulsen2014a

http://www.plancomps.org
http://www.plancomps.org/bachpoulsen2014a

20 C. Bach Poulsen and P. D. Mosses

Danvy, O., Nielsen, L.R.: Refocusing in reduction semantics. BRICS Research
Series RS-04-26, Dept. of Comp. Sci., Aarhus University (2004)

Felleisen, M., Hieb, R.: The revised report on the syntactic theories of sequential
control and state. Theor. Comput. Sci. 103(2), 235–271 (Sep 1992)

Jones, N.D.: Transformation by interpreter specialisation. Sci. Comput. Program.
52(1-3), 307–339 (Aug 2004)

Kahn, G.: Natural semantics. In: STACS’87. LNCS, vol. 247, pp. 22–39. Springer
Berlin Heidelberg (1987)

Leroy, X., Grall, H.: Coinductive big-step operational semantics. Inf. Comput.
207(2), 284–304 (2009)

Milner, R.: A Calculus of Communicating Systems, LNCS, vol. 92. Springer
(1980)

Milner, R., Tofte, M., Macqueen, D.: The Definition of Standard ML. MIT Press,
Cambridge, MA, USA (1997)

Mosses, P.D.: Modular structural operational semantics. J. Log. Algebr. Program.
60-61, 195–228 (2004)

Pierce, B.C.: Basic Category Theory for Computer Scientists. MIT Press (1991)
Pierce, B.C.: Types and programming languages. MIT Press (2002)
Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr.
Program. 60-61, 17–139 (2004)

Ros,u, G., S, erbănut,ă, T.F.: An overview of the K semantic framework. J. Log.
Algebr. Program. 79(6), 397 – 434 (2010)

Sieczkowski, F., Biernacka, M., Biernacki, D.: Automating derivations of abstract
machines from reduction semantics. In: Hage, J., Morazán, M. (eds.) IFL’11,
LNCS, vol. 6647, pp. 72–88. Springer Berlin Heidelberg (2011)

Wright, A., Felleisen, M.: A syntactic approach to type soundness. Inf. Comput.
115(1), 38 – 94 (1994)

Xiao, Y., Sabry, A., Ariola, Z.M.: From syntactic theories to interpreters: Au-
tomating the proof of unique decomposition. Higher-Order and Symbolic
Computation 14(4), 387–409 (2001)

	Deriving Pretty-Big-Step Semantics from Small-Step Semantics
	Introduction
	The Language and Its Semantics
	Big-Step Semantics
	Pretty-Big-Step Semantics
	Small-Step SOS
	Small-Step Modular SOS

	From Small-Step to Pretty-Big-Step Modular SOS
	Preliminaries
	Syntax-directed evaluation.
	Exception state recognition.

	Deriving Pretty-Big-Step Rules by Refocusing

	Scaling Up to Real Languages
	Side Effects
	C-Style for-Loops
	Strictness Annotations

	Related Work
	Conclusion and Future Directions

