```
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# OPTIONS -W #-}
```

```
import Control.Monad
import Control.Monad.State
```

# Compiling with Op Trees

### Abstract

Definitional interpreters are an approach to specifying programming languages in a concise and executable manner that is easy to read and maintain.
However, interpreted language run times are typically orders of magnitude slower than compiled language run times.
On the other hand, compilers are typically more challenging to develop than interpreters are, because they typically do multiple transformations on *intermediate representations* (IRs).

In this blog post we explore how to bridge the gap between interpreters and compilers by using *op trees* as a compiler IR.
Op trees are a generic data structure for representing monadic programs as syntax, such that we can transform them.
We illustrate the approach by building a small compiler that compiles a language with arithmetic, if-then-else expressions, and stateful references into a register-based machine language with conditional jumps.

The blog post is literate Haskell, and the contents of the blog post is based on joint work with Andrew Tolmach and Eelco Visser.

### Contents

# Introduction

There are many approaches to implementing and specifying new programming languages.
Important and frequently-used approaches include writing an *interpreter*, writing a *compiler*, or giving a *mathematical definition*.
Each approach has its merits:

- Interpreters are comparatively easy to develop, making it easy to experiment with a language design.
- Compilers can yield more efficient language run times than interpreters, but they are comparatively hard to develop.
- Mathematical definitions allow formal verification of meta-theoretical properties of the language and/or verifying programs written in the language.

In this blog post we show how to do all three at once, by defining our language in terms of *op trees*.
The blog post focuses on how op trees can be used for compilation; but op trees are instances of the widely-used *free monad* (see, e.g., the “free” package, or one of the many other implementations available on Hackage of the free monad), for which other blog posts describe how they can be used to implement interpreters, and what the mathematical foundations of the free monad are.
We will be defining and implementing a language via the following pipeline:^{1}

This pipeline, in words:

- We first map abstract syntax trees to a monadic semantics via a
`denote`

function. The`denote`

function is a definitional interpreter. - The operations of the monad used in our definitional interpreter is given by a type class that defines the API of the meaning-giving constructs in our interpreter. We give two instances of this type class: (a) as an interpreter (the lower dotted line in the pipeline above), and (b) as an
*op tree compiler*(the other dotted line). - We define transformations to work on op trees, via a
`transform`

function. - After we have applied the necessary transformations, target code is
`emit`

ted.

The rest of the blog post describes this pipeline.

We assume familiarity with Haskell and (some of) its features for lightweight dependent types.

# A Definitional Interpreter for an Expression Language

We consider a simple language with arithmetic expressions (`Num`

, `Plus`

, and `Sub`

), less-than-equals expressions (`Lte`

), if-then-else expressions (`Ite`

), and stateful reference expressions (`MkRef`

, `Asgn`

, and `Deref`

).
Its abstract syntax is given by the following data type:

```
data Expr = Num Int
| Plus Expr Expr
| Sub Expr Expr
| Lte Expr Expr
| Ite Expr Expr Expr
| MkRef Expr
| Asgn Expr Expr
| Deref Expr
```

We shall implement a definitional interpreter for our language that maps each expression to a monadic computation, for some notion of monad that provides the operations captured in the three APIs below for arithmetic, less-than-equals and if-then-else, and stateful references:

```
class ArithmeticAPI m v where
num :: Int -> m v
plus :: v -> v -> m v
sub :: v -> v -> m v
class LteIteAPI m v where
lte :: v -> v -> m v
ite :: v -> m v -> m v -> m v
class StateAPI m v where
mkref :: v -> m v
asgn :: v -> v -> m v
deref :: v -> m v
```

These APIs define a language run time that has a means of creating and adding numbers (`num`

and `plus`

), comparing them (`lte`

), branching on a boolean value (`ite`

), and creating, assigning, and dereferencing a value (`mkref`

, `asgn`

, and `deref`

).
The APIs are parametric in both the notion of monad (`m`

) and notion of value (`v`

).

Our definitional interpreter is given by the `denote`

function:

```
denote :: (Monad m, ArithmeticAPI m v,
LteIteAPI m v, StateAPI m v) => Expr -> m v
Num i) = num i
denote (Plus e1 e2) = do
denote (<- denote e1
v1 <- denote e2
v2
plus v1 v2Sub e1 e2) = do
denote (<- denote e1
v1 <- denote e2
v2
sub v1 v2Lte e1 e2) = do
denote (<- denote e1
v1 <- denote e2
v2
lte v1 v2Ite e e1 e2) = do
denote (<- denote e
v
ite v (denote e1) (denote e2)MkRef e) = do
denote (<- denote e
v
mkref vAsgn e1 e2) = do
denote (<- denote e1
v1 <- denote e2
v2
asgn v1 v2Deref e) = do
denote (<- denote e
v deref v
```

At this point, readers familiar with Haskell and monads can probably see how the API can be instantiated to yield an interpreter.
It is less obvious how to instantiate the APIs to yield a *compiler*.
We leave the interpreter instance of the APIs as an exercise for the reader, and focus on the problem of instantiating the APIs to yield a compiler.
First, let us consider the (imaginary) target language for our compiler.

# A Target Register Machine and Its Instruction Set

The register machine we consider is going to have an instruction set corresponding to the type class `TargetAPI`

:

```
class TargetAPI reg lbl instr | instr -> reg, instr -> lbl where
iload :: Int -> reg -> instr -> instr
iadd :: reg -> reg -> reg -> instr -> instr
isub :: reg -> reg -> reg -> instr -> instr
lbl :: lbl -> instr -> instr
jmp :: lbl -> instr -> instr
jmpltez :: reg -> lbl -> instr -> instr
mov :: reg -> reg -> instr -> instr
done :: reg -> instr
```

The type class is parametric in the type of registers (`reg`

), the type of labels (`lbl`

), and the type of instructions `instr`

.
The instructions are as follows:

`iload i r xs`

loads an integer`i`

into register`r`

, and proceeds with the remaining instructions`xs`

.`iadd r1 r2 r3 xs`

adds two integer values in registers`r1`

and`r2`

, stores the result in register`r3`

, and proceeds with the remaining instructions`xs`

.`isub r1 r2 r3 xs`

subtracts two integer values, akin to`iadd`

.`lbl l xs`

labels the instructions from`xs`

onwards, and proceeds with the remaining instructions`xs`

.`jmp l`

represents an unconditional jump to`l`

.`jmpltez r l xs`

jumps to the label`l`

if`r`

is less than or equal to zero, or proceeds with the remaining instructions`xs`

otherwise.`mov r1 r2 xs`

moves the value stored in`r1`

into`r2`

and proceeds with the remaining instructions`xs`

.`done r`

indicates that there are no remaining instructions, and indicates that a return value can be found in register`r`

.

(Note that the target language does not have any heap, so references will be modeled as registers.)

Our objective is to define a compiler from `ArithmeticAPI`

, `LteIteAPI`

, and `StateAPI`

to `TargetAPI`

; i.e., for suitable notions of values, registers, and labels:

```
compileI :: (ArithmeticAPI m v, LteIteAPI m v, StateAPI m v,
TargetAPI reg lbl instr) => m v -> instr
```

This `compile`

function has a monad in its domain.
But how do we pattern match on monads?
Op trees are the answer to this question.

# Op Trees

In a nut shell, op trees are syntactic representations of monadic computations.
To define the shape of the monadic computations that an op tree can contain, op trees are parametric in a notion of *signature functor*.
Signature functors describe the type of any monadic operation that matches the pattern given by the following type signature:

`monadOp :: v1 -> .. -> vn -> (a1 -> m w1) -> ... -> (am -> m wm) -> m u`

That is, signature functors comprise the following information about the syntactic shape of a monadic operation:

- The operation name and its value parameters (
`v1 ... vn`

); - The parameter types (
`a1 ... am`

) and return types (`w1 ... wm`

) of sub-computations; and - The return type of the operation (
`u`

)

This information is captured by the following `OpSig`

type, the type of signature functors:

```
type OpSig = [(* , *)] -> -- subs
* -> -- ret
*
```

For any `sig :: OpSig`

, the application `sig subs ret`

defines the signature of a monadic operation, where `ret`

is the return type of the operation, and `subs`

is a list of pairs of a parameter type and a return type.
The pairs in this list describe the shape of each monadic sub-computation (`(a1 -> m w1) -> ... (a2 -> m w2)`

).
The following `Subs`

data type defines a list of monadic sub-computations whose shape is given by such a list of pairs `subs :: [(* , *)]`

:

`infixr 7 :::`

```
data Subs m (subs :: [(* , *)]) where
Nil :: Subs m '[]
(:::) :: (a -> m w) -> Subs m subs -> Subs m ('(a, w) ': subs)
```

Now, an op tree is but a sequence of monadic computations given by some signature `sig :: OpSig`

:

```
data OpTree (sig :: OpSig) a where
Leaf :: a ->
OpTree sig a
Node :: sig subs ret ->
Subs (OpTree sig) subs ->
-> OpTree sig a) ->
(ret OpTree sig a
```

The `Leaf`

constructor is a syntactic representation of a monadic computation that returns a value.
The `Node`

constructor is a syntactic representation of a monadic computation `(do v <- monadOp x1 ... xn c1 ... cn; k v) :: m a`

where:

```
monadOp :: v1 -> .. -> vn -> (a1 -> m w1) -> ... -> (am -> m wm) -> m u
xi :: vi -- i ∈ 1 ... n
ci :: ai -> m wi -- i ∈ 1 ... m
k :: u -> m a
```

## Concatenating Op Trees

Op trees are functorial, and concatenatable. Uncoincidentally, the type of the concatenation operation for op trees coincides with monadic bind.

```
instance Functor (OpTree sig) where
fmap f (Leaf x) = Leaf (f x)
fmap f (Node op subs k) = Node op subs (fmap f . k)
```

```
instance Applicative (OpTree sig) where
pure = Leaf
<*>) = ap (
```

```
instance Monad (OpTree sig) where
Leaf x >>= g = g x
Node op subs k >>= g =
Node op subs (\ x -> k x >>= g)
```

Crucially, concatenation (monadic bind) does not distribute over `subs`

; only over continuations `k`

.
This distinguishing feature of op trees is essential for the purpose of using op trees as an intermediate representation in a compiler.
If op tree concatenation would concatenate into `subs`

, we would obtain a compiler that duplicates code unnecessarily.
(We invite the reader to read the rest of this blog post, and revisit this statement after seeing how op trees are used for compilation.)

## Op Trees are Instances of the Free Monad

Op trees are an instance of the widely-used notion of *free monad*.
If you are not familiar with the free monad, you may wish to skip to the next section of the blog post.

The standard free monad is given by the following type:

```
data Free f a = Pure a
| Impure (f (Free f a))
```

If `f`

is functorial, then `Free f`

is functorial and monadic:

```
instance Functor f => Functor (Free f) where
fmap f (Pure a) = Pure (f a)
fmap f (Impure g) = Impure (fmap (fmap f) g)
```

```
instance Functor f => Applicative (Free f) where
pure = Pure
<*>) = ap (
```

```
instance Functor f => Monad (Free f) where
return = Pure
Pure x >>= g = g x
Impure f >>= g = Impure (fmap (\ k' -> k' >>= g) f)
```

To see how `Tree`

is an instance of `Free`

, consider the following `J`

functor:

```
data J sig a where
J :: sig subs ret ->
Subs (Free (J sig)) subs ->
-> a) ->
(ret J sig a
instance Functor (J sig) where
fmap f (J op subs k) = J op subs (f . k)
```

Using `J`

:

`type OpTree' sig a = Free (J sig) a`

If we unfold the definition of `J`

in the data type `Free (J sig) a`

, and if we unfold the definition of `fmap`

in the monadic bind of `Monad (Free (J sig))`

, we see that `OpTree sig a`

and `OpTree' sig a`

are, in fact, equivalent.

## Why “Op Trees”? (A Bit of Historical Context)

Op trees borrow their naming from Hancock and Setzer’s I/O trees for defining and reasoning about interactive systems by encoding them in dependent type theory (Hancock and Setzer 2000). I/O trees are a little simpler than op trees, insofar as the encoding of I/O trees that Hancock and Setzer gave only supports monadic operations without monadic sub-computations; i.e., monadic computations that have the form:

`monadOp :: v1 -> ... -> vn -> m u`

The goal of Hancock and Setzer was to provide a model for Haskell’s I/O computations which, at the time, did not include operations with monadic sub-computations. This blog post pursues a different goal.

# Operation Signatures for Our APIs

We define operation signatures for the monadic operations in `MonadAPI`

.
We do so using three distinct signatures, for each of the three classes of constructs that our language contains: `ArithOp`

defines the signature of the monadic operations in arithmetic operations; `LteIteOp`

defines the signature of less-than-equals and if-then-else expressions; and `StateOp`

defines the signature of stateful reference operations.
Each signature is parametric in a notion of value `v`

.

```
data ArithOp v :: OpSig where
NumOp :: Int -> ArithOp v '[] v
PlusOp :: v -> v -> ArithOp v '[] v
SubOp :: v -> v -> ArithOp v '[] v
```

```
data LteIteOp v :: OpSig where
LteOp :: v -> v -> LteIteOp v '[] v
IteOp :: v -> LteIteOp v '[ '((), v), '((), v) ] v
```

```
data StateOp v :: OpSig where
MkRefOp :: v -> StateOp v '[] v
AsgnOp :: v -> v -> StateOp v '[] v
DerefOp :: v -> StateOp v '[] v
```

These signatures can be combined using the signature sum type:

`infixr 7 :+:`

```
data (:+:) (sig1 :: OpSig) (sig2 :: OpSig) :: OpSig where
Inj1 :: sig1 subs ret -> (sig1 :+: sig2) subs ret
Inj2 :: sig2 subs ret -> (sig1 :+: sig2) subs ret
```

The monadic operations in `MonadAPI`

are thus given by:

`type MonadAPISig v = ArithOp v :+: LteIteOp v :+: StateOp v`

In fact, `OpTree (MonadAPISig v)`

is an instance of our monad APIs:

`instance ArithmeticAPI (OpTree (MonadAPISig v)) v where -- elided`

```
=
num i Node (Inj1 (NumOp i)) Nil Leaf
=
plus v1 v2 Node (Inj1 (PlusOp v1 v2)) Nil Leaf
=
sub v1 v2 Node (Inj1 (SubOp v1 v2)) Nil Leaf
```

`instance LteIteAPI (OpTree (MonadAPISig v)) v where -- elided`

```
=
lte v1 v2 Node (Inj2 (Inj1 (LteOp v1 v2))) Nil Leaf
=
ite v m1 m2 Node (Inj2 (Inj1 (IteOp v))) (const m1 ::: const m2 ::: Nil) Leaf
```

`instance StateAPI (OpTree (MonadAPISig v)) v where -- elided`

```
=
mkref v Node (Inj2 (Inj2 (MkRefOp v))) Nil Leaf
=
asgn v1 v2 Node (Inj2 (Inj2 (AsgnOp v1 v2))) Nil Leaf
=
deref v Node (Inj2 (Inj2 (DerefOp v))) Nil Leaf
```

In other words, the signatures we have just given and the op tree concatenation operation we gave earlier, provides an op code compiler:

```
opcomp :: Expr -> OpTree (MonadAPISig v) v
= denote opcomp
```

We could go the standard route of free monads and provide handlers for the signature functor operations, to build an interpreter with modular effects following, e.g., (Swierstra 2008). In this blog post we consider how op trees provide a handle on not just effects, but also compilation.

# Compiling If-Then-Else Operations

We introduce a signature for labeled jumps, akin to the `jmp`

and `jumpltez`

instructions of our target machine.
The operation signatures correspond to the three monadic operations in the following type class:

```
class LabelJumpLtezAPI m l v | m -> l, m -> v where
label :: (l -> m v) -> m v
jump :: l -> m v
jumpltez :: v -> l -> m v
```

The semantics of these operations is intended to correspond to the instructions of the target machine:

`label f`

labels*its continuation*. That is, in a computation`do v <- label f; k`

, the label that`f`

takes as argument refers to`k`

.`jump l`

jumps to the label`l`

.`jumpltez v l`

checks if`v`

is less-than or equal to zero and jumps to`l`

if it is.

The signature of these operations is:

```
data LabelJumpLtezOp l v :: OpSig where
LabelOp :: LabelJumpLtezOp l v '[ '(l , v) ] v
JumpOp :: l -> LabelJumpLtezOp l v '[] v
JumpLtezOp :: v -> l -> LabelJumpLtezOp l v '[] v
```

We shall compile op trees with `LteIteOp`

operations into op trees with `LabelJumpLtezOp`

operations instead.

For convenience, we first define a type alias for our notion of target op trees and show that such trees are an instance of the `LabelJumpLtezAPI`

:

`type TargetAPISig l v = ArithOp v :+: LabelJumpLtezOp l v :+: StateOp v`

`instance LabelJumpLtezAPI (OpTree (TargetAPISig l v)) l v where -- elided`

```
= Node (Inj2 (Inj1 LabelOp)) (m ::: Nil) Leaf
label m = Node (Inj2 (Inj1 (JumpOp l))) Nil Leaf
jump l = Node (Inj2 (Inj1 (JumpLtezOp v l))) Nil Leaf jumpltez v l
```

Note that `TargetAPISig`

also satisfies the `ArithmeticAPI`

and `StateAPI`

classes:

`instance ArithmeticAPI (OpTree (TargetAPISig l v)) v where -- elided`

```
=
num i Node (Inj1 (NumOp i)) Nil Leaf
=
plus v1 v2 Node (Inj1 (PlusOp v1 v2)) Nil Leaf
=
sub v1 v2 Node (Inj1 (SubOp v1 v2)) Nil Leaf
```

`instance StateAPI (OpTree (TargetAPISig l v)) v where -- elided`

```
=
mkref v Node (Inj2 (Inj2 (MkRefOp v))) Nil Leaf
=
asgn v1 v2 Node (Inj2 (Inj2 (AsgnOp v1 v2))) Nil Leaf
=
deref v Node (Inj2 (Inj2 (DerefOp v))) Nil Leaf
```

We now define a function `transform`

that compiles the computations given by the signature `LteIteOp`

into `LabelJumpLtezOp`

:

```
transform :: OpTree (MonadAPISig v) a -> OpTree (TargetAPISig l v) a
Leaf x) = Leaf x
transform (Node (Inj2 (Inj1 (IteOp v))) (k1 ::: k2 ::: Nil) k) = do
transform (<- num 0
vz <- mkref vz
vt -> do
label (\ ljoin -> do
label (\ lthen
jumpltez v lthen<- transform (k2 ())
v
asgn vt v
jump ljoin)<- transform (k1 ())
v
asgn vt v)<- deref vt
v
transform (k v)Node (Inj2 (Inj1 (LteOp v1 v2))) Nil k) = do
transform (<- sub v1 v2
v
transform (k v)Node (Inj1 s) subs k) = -- op unchanged
transform (Node (Inj1 s) (mapSubs transform subs) (transform . k)
Node (Inj2 (Inj2 s)) subs k) = -- op unchanged
transform (Node (Inj2 (Inj2 s)) (mapSubs transform subs) (transform . k)
```

Here:

```
mapSubs :: (forall a. f a -> g a) ->
Subs f subs -> Subs g subs -- elided
```

```
Nil = Nil
mapSubs _ ::: subs) = (f . k) ::: mapSubs f subs mapSubs f (k
```

The only two interesting cases of `transform`

are the cases for if-then-else operations (`IteOp`

) and less-than-equals operations (`LteOp`

), which describe how if-then-else expressions are translated into labeled conditional jumps, and how less-than-equals expressions are translated into an integer subtraction operation, with the understanding that numbers less than or equal to zero represent Boolean truth.

We are now ready to emit target code from our op trees of type `OpTree (TargetAPISig l v) a`

. Before doing so, let us consider:

### What Did Op Trees Buy Us?

Op trees let us apply transformations that made explicit at the type level what the transformation that we applied was: the transformation is summarized as the difference between the signatures before and after transformation:

`ArithOp v :+: LteIteOp v :+: StateOp v`

and

`ArithOp v :+: LabelJumpLtezOp l v :+: StateOp v`

Op trees capture the structure of the operations that make up

*the definitional interpreter itself*, and uses this as the basis for semantics-directed compilation.

# Emitting Code

We emit code that matches the following data type, corresponding to the `TargetAPI`

type class:

```
data Instr = ILoad Int Reg Instr
| IAdd Reg Reg Reg Instr
| ISub Reg Reg Reg Instr
| Lbl Label Instr
| Jmp Label Instr
| JmpLtez Reg Label Instr
| Mov Reg Reg Instr
| Done Reg
```

Here:

```
type Reg = String
type Label = String
```

We also introduce a notion of concatenation for instructions. Our compiler will make use of this:

`concatI :: Instr -> (Reg -> Instr) -> Instr -- elided`

```
ILoad i r c) k = ILoad i r (concatI c k)
concatI (IAdd r1 r2 r c) k = IAdd r1 r2 r (concatI c k)
concatI (ISub r1 r2 r c) k = ISub r1 r2 r (concatI c k)
concatI (Lbl l c) k = Lbl l (concatI c k)
concatI (Jmp l c) k = Jmp l (concatI c k)
concatI (JmpLtez r l c) k = JmpLtez r l (concatI c k)
concatI (Mov r1 r2 c) k = Mov r1 r2 (concatI c k)
concatI (Done r) k = k r concatI (
```

We introduce a monad `Gen`

for generating fresh register names and fresh label names (a counter for each):

`type Gen = State (Int, Int)`

Here, `State`

refers to a standard state monad.

`fresh`

generates a fresh register name:

```
freshr :: Gen Reg
= do
freshr <- get
(i, l) + 1, l)
put (i return ("r" ++ show i)
freshl :: Gen Label
= do
freshl <- get
(i, l) + 1)
put (i, l return ("l" ++ show l)
```

`instantiate k`

uses `fresh`

to generate a new register name, and passes that name to `k`

:

```
instantiate :: (Reg -> Gen b) -> Gen (Reg, b)
= do
instantiate k <- freshr
r <- k r
k' return (r, k')
```

Using `fresh`

and `instantiate`

, we define a `compileI`

function from op trees to instructions, where commands are parameterized by *register names* rather than values (`Cmd Reg`

):

```
compileI :: OpTree (TargetAPISig Label Reg) Reg -> Gen Instr
Leaf x) = return (Done x)
compileI (Node (Inj1 (NumOp i)) Nil k) = do
compileI (<- instantiate (compileI . k)
(r, c) return (ILoad i r c)
Node (Inj1 (PlusOp r1 r2)) Nil k) = do
compileI (<- instantiate (compileI . k)
(r, c) return (IAdd r1 r2 r c)
Node (Inj1 (SubOp r1 r2)) Nil k) = do
compileI (<- instantiate (compileI . k)
(r, c) return (ISub r1 r2 r c)
Node (Inj2 (Inj1 LabelOp)) (k1 ::: Nil) k) = do
compileI (<- freshl
l <- compileI (k1 l)
c1 <- instantiate (compileI . k)
(_, c) return (concatI c1 (const (Lbl l c)))
Node (Inj2 (Inj1 (JumpOp l))) Nil k) = do
compileI (<- instantiate (compileI . k)
(_, c) return (Jmp l c)
Node (Inj2 (Inj1 (JumpLtezOp r l))) Nil k) = do
compileI (<- instantiate (compileI . k)
(_, c) return (JmpLtez r l c)
Node (Inj2 (Inj2 (MkRefOp r1))) Nil k) = do
compileI (<- instantiate (compileI . k)
(r, c) return (Mov r1 r c)
Node (Inj2 (Inj2 (AsgnOp r1 r2))) Nil k) = do
compileI (<- instantiate (compileI . k)
(_, c) return (Mov r2 r1 c)
Node (Inj2 (Inj2 (DerefOp r1))) Nil k) = do
compileI (<- instantiate (compileI . k)
(r, c) return (Mov r1 r c)
```

Now:

```
comp :: Expr -> Instr
= fst .
comp flip runState (0, 0) .
.
compileI .
transform denote
```

```
instance Show Instr where
show (ILoad i r c) =
"iload " ++ show i ++ " " ++ r ++ "\n" ++ show c
show (IAdd r1 r2 r c) =
"iadd " ++ r1 ++ " " ++ r2 ++ " " ++ r ++ "\n" ++ show c
show (ISub r1 r2 r c) =
"isub " ++ r1 ++ " " ++ r2 ++ " " ++ r ++ "\n" ++ show c
show (Lbl l c) =
++ ":\n" ++ show c
l show (Jmp l c) =
"jmp " ++ l ++ "\n" ++ show c
show (JmpLtez r l c) =
"jmpltez " ++ r ++ " " ++ l ++ "\n" ++ show c
show (Mov r1 r2 c) =
"mov " ++ r1 ++ " " ++ r2 ++ "\n" ++ show c
show (Done r) =
"done " ++ r
```

Et voilà:

```
> comp (Ite (Lte (Num 0) (Num 1)) (Num 42) (Num 1337))
λ0 r0
iload 1 r1
iload
isub r0 r1 r20 r3
iload
mov r3 r4
jmpltez r2 l11337 r6
iload
mov r6 r4
jmp l0:
l142 r10
iload
mov r10 r4:
l0
mov r4 r13 done r13
```

# Beyond Arithmetic Expressions

Since writing this blog post, Bernard Bot has written his MSc thesis on using op trees as an IR for a CPS-based compiler.
We have recently coauthored a paper (submitted for review) together with Andrew Tolmach and Eelco Visser that builds on his work.
The paper also shows how `OpTree`

s lets us write compiler transformations that avoid boilerplate code.
The paper uses a slightly different notion of `OpTree`

from what this blog post shows, but the basic idea is the same.

# Conclusion

We have presented op trees, and illustrated how they can be used for semantics-directed transformation and compilation of monadic programs.

### Acknowledgements

Thanks to Arjen Rouvoet and Bernard Bot for feedback on an earlier version on this blog post.

# References

*Computer Science Logic, 14th Annual Conference of the EACSL, Fischbachau, Germany, August 21-26, 2000, Proceedings*, edited by Peter Clote and Helmut Schwichtenberg, 1862:317–31. Lecture Notes in Computer Science. Springer. https://doi.org/10.1007/3-540-44622-2_21.

*J. Funct. Program.*18 (4): 423–36. https://doi.org/10.1017/S0956796808006758.